skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Electrospun single-phase spinel magnetic high entropy oxide nanoparticles via low-temperature ambient annealing
High entropy oxide nanoparticles (HEO NPs) with multiple component elements possess improved stability and multiple uses for functional applications, including catalysis, data memory, and energy storage. However, the synthesis of homogenous HEO NPs containing five or more immiscible elements with a single-phase structure is still a great challenge due to the strict synthetic conditions. In particular, several synthesis methods of HEO NPs require extremely high temperatures. In this study, we demonstrate a low cost, facile, and effective method to synthesize three- to eight-element HEO nanoparticles by a combination of electrospinning and low-temperature ambient annealing. HEO NPs were generated by annealing nanofibers at 330 °C for 30 minutes under air conditions. The average size of the HEO nanoparticles was ∼30 nm and homogenous element distribution was obtained from post-electrospinning thermal decomposition. The synthesized HEO NPs exhibited magnetic properties with the highest saturation magnetization at 9.588 emu g −1 and the highest coercivity at 147.175 Oe for HEO NPs with four magnetic elements while integrating more nonmagnetic elements will suppress the magnetic response. This electrospun and low-temperature annealing method provides an easy and flexible design for nanoparticle composition and economic processing pathway, which offers a cost- and energy-effective, and high throughput entropy nanoparticle synthesis on a large scale.  more » « less
Award ID(s):
1944374 2330738
PAR ID:
10424011
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
5
Issue:
11
ISSN:
2516-0230
Page Range / eLocation ID:
3075 to 3083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications. 
    more » « less
  2. The prototype high-entropy oxide (HEO) Y0.2La0.2Ce0.2Pr0.2Sm0.2O2−δ represents a particularly complex class of HEOs with significant anion sublattice entropy. The system takes either a fluorite or bixbyite-type crystal structure, depending on synthesis kinetics and thermal history. Here, we synthesize bulk ceramics and epitaxial thin films of Y0.2La0.2Ce0.2Pr0.2Sm0.2O2−δ and use diffraction to explore crystal symmetry and phase. Thin films exhibit the high symmetry fluorite phase, while bulk ceramics adopt the lower symmetry bixbyite phase. The difference in chemical ordering and observed symmetry between vapor-deposited and reactively sintered specimens suggests that synthesis kinetics can influence accessible local atomic configurations, i.e., the high kinetic energy adatoms quench in a higher-effective temperature, and thus higher symmetry structure with more configurational entropy. More generally, this demonstration shows that recovered HEO specimens can exhibit appreciably different local configurations depending on synthesis kinetics, with potential ramifications on macroscopic physical properties. 
    more » « less
  3. Abstract The multi‐principal element alloy nanoparticles (MPEA NPs), a new class of nanomaterials, present a highly rewarding opportunity to explore new or vastly different functional properties than the traditional mono/bi/multimetallic nanostructures due to their unique characteristics of atomic‐level homogeneous mixing of constituent elements in the nanoconfinements. Here, the successful creation of NiCoCr nanoparticles, a well‐known MPEA system is reported, using ultrafast nanosecond laser‐induced dewetting of alloy thin films. Nanoparticle formation occurs by spontaneously breaking the energetically unstable thin films in a melt state under laser‐induced hydrodynamic instability and subsequently accumulating in a droplet shape via surface energy minimization. While NiCoCr alloy shows a stark contrast in physical properties compared to individual metallic constituents, i.e., Ni, Co, and Cr, yet the transient nature of the laser‐driven process facilitates a homogeneous distribution of the constituents (Ni, Co, and Cr) in the nanoparticles. Using high‐resolution chemical analysis and scanning nanodiffraction, the environmental stability and grain arrangement in the nanoparticles are further investigated. Thermal transport simulations reveal that the ultrashort (≈100 ns) melt‐state lifetime of NiCoCr during the dewetting event helps retain the constituent elements in a single‐phase solid solution with homogenous distribution and opens the pathway to create the unique MPEA nanoparticles with laser‐induced dewetting process. 
    more » « less
  4. Abstract The nucleation and growth of nanoparticles are critical processes determining the size, shape, and properties of resulting nanoparticles. However, understanding the complex mechanisms guiding the formation and growth of colloidal multielement alloy nanoparticles remains incomplete due to the involvement of multiple elements with different properties. This study investigates in situ colloidal synthesis of multielement alloys using transmission electron microscopy (TEM) in a liquid cell. Two different pathways for nanoparticle formation in a solution containing Au, Pt, Ir, Cu, and Ni elements, resulting in two distinct sets of particles are observed. One set exhibits high Au and Cu content, ranging from 10 to 30 nm, while the other set is multi‐elemental, with Pt, Cu, Ir, and Ni, all less than 4 nm. The findings suggest that, besides element miscibility, metal ion characteristics, particularly reduction rates, and valence numbers, significantly impact particle composition during early formation stages. Density functional theory (DFT) simulations confirm differences in nanoparticle composition and surface properties collectively influence the unique growth behaviors in each nanoparticle set. This study illuminates mechanisms underlying the formation and growth of multielement nanoparticles by emphasizing factors responsible for chemical separation and effects of interplay between composition, surface energies, and element miscibility on final nanoparticles size and structure. 
    more » « less
  5. Low-cost materials, scalable manufacturing, and high power conversion efficiency are critical enablers for large-scale applications of photovoltaic (PV) cells. Cu 2 ZnSn(S,Se) 4 (CZTSSe) has emerged as a promising PV material due to its low-cost earth-abundant nature and the low toxicity of its constituents. We present a compact and environmentally friendly route for preparing metal sulfide (metals are Cu, Zn, and Sn) nanoparticles (NPs) and optimize their annealing conditions to obtain uniform carbon-free CZTSSe thin films with large grain sizes. Further, the solution-stable binary NP inks synthesized in an aqueous solution with additives are shown to inhibit the formation of secondary phases during annealing. A laboratory-scale PV cell with a Al/AZO/ZnO/CdS/CZTSSe/Mo-glass structure is fabricated without anti-reflective coatings, and a 9.08% efficiency under AM1.5G illumination is demonstrated for the first time. The developed scalable, energy-efficient, and environmentally sustainable NP synthesis approach can enable integration of NP synthesis with emerging large-area deposition and annealing methods for scalable fabrication of CZTSSe PV cells. 
    more » « less