skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Floral traits of animal-pollinated Sevilleta plant species
Concern about pollinator populations is widespread, with bees documented to be in decline due to factors including habitat loss, disease, and pesticides. In addition, climate change may be an important cause of bee population losses, but few studies have examined bee abundance relationships with climate variables. Importantly, bees may respond directly to climate or may exhibit indirect responses to climate via changes in plant phenology or community composition. This study collected floral trait data to complement the Sevilleta LTER pollinator monitoring, plant phenology, and plant biomass datasets, with the aim of examining whether floral resource availability mediates bee responses to climate. For 71 common, animal-pollinated flowering plant species, we measured floral traits relevant to pollination in June–October 2018 and April–August 2019 within sites representing four ecosystem types at the Sevilleta National Wildlife Refuge: Plains grassland, Chihuahuan Desert grassland, Chihuahuan Desert shrubland, and piñon-juniper woodland. On a minimum of 5 individuals per plant species, we recorded the total number of open flowers and the corolla width of flowers, along with plant height and vegetative cover. These data may be used in combination with the Sevilleta LTER pollinator monitoring, phenology, and biomass datasets to examine how bee and floral resource abundance, diversity, and phenology vary across years and whether these changes correspond with one another, as well as to consider relationships among climate, floral resource abundance/diversity, and bee abundance/diversity.  more » « less
Award ID(s):
1655499
PAR ID:
10424090
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study was designed to examine community- or population-level fluctuations in bee species at the Sevilleta National Wildlife Refuge, both intra- and inter-annually. From 2002 to 2019, passive funnel traps were used to collect bees at three sites, each representing a different ecosystem type of the southwestern U.S. (Plains grassland, Chihuahuan Desert grassland, and Chihuahuan Desert shrubland). Bees were collected during each month from March through October, and were identified to species by taxonomic experts. 
    more » « less
  2. Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success. 
    more » « less
  3. Abstract Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant–pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well‐understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time‐series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community‐wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long‐term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change. 
    more » « less
  4. {"Abstract":["This dataset includes estimated plant aboveground live biomass data\n measured in 1 m x 1 m quadrats at several sites and experiments\n under the Sevilleta LTER program. Quadrat locations span four\n distinct ecosystems and their ecotones: creosotebush dominated\n Chihuahuan Desert shrubland (est. winter 1999), black\n grama-dominated Chihuahuan Desert grassland (est. winter 1999), blue\n grama-dominated Plains grassland (est. winter 2002), and\n pinon-juniper woodland (est. winter 2003). Data on plant cover and\n height for each plant species are collected per individual plant or\n patch (for clonal plants) within 1 m x 1 m quadrats. These data\n inform population dynamics of foundational and rare plant species.\n Biomass is estimated using plant allometries from non-destructive\n measurements of plant cover and height, and can be used to calculate\n net primary production (NPP), a fundamental ecosystem variable that\n quantifies rates of carbon consumption and fixation. Estimates of\n plant species cover, total plant biomass, or NPP can inform\n understanding of biodiversity, species composition, and energy flow\n at the community scale of biological organization, as well as\n spatial and temporal responses of plants to a range of ecological\n processes and direct experimental manipulations. The cover and\n height of individual plants or patches are sampled twice yearly\n (spring and fall) in permanent 1m x 1m plots within each site or\n experiment. This dataset includes core site monitoring data (CORE,\n GRIDS, ISOWEB, TOWER), observations in response to wildfire (BURN),\n and experimental treatments of extreme drought and delayed monsoon\n rainfall (EDGE), physical disturbance to biological soil crusts on\n the soil surface (CRUST), interannual variability in precipitation\n (MEANVAR), intra-annual variability via additions of monsoon\n rainfall (MRME), additions of nitrogen as ammonium nitrate\n (FERTILIZER), additions of nitrogen x phosphorus x potassium\n (NutNet), and interacting effects of nighttime warming, nitrogen\n addition, and El Niño winter rainfall (WENNDEx). To build allometric\n equations that relate biomass to plant cover or volume, the dataset\n "SEV-LTER quadrat plant cover and height data all sites and\n experiments" is used with a separate dataset of selectively\n harvested plant species "SEV-LTER Plant species mass data for\n allometry." Together, these datasets produced \u201cSEV-LTER quadrat\n plant species biomass all sites and experiments\u201d using the scripts\n posted with the allometry dataset. Data from the CORE sites in this\n dataset were designated as NA-US-011 in the Global Index of\n Vegetation-Plot Databases (GIVD). Data from the TOWER sites in this\n dataset are linked to Ameriflux sites:\n ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and\n ameriflux.lbl.gov/sites/siteinfo/US-Ses."]} 
    more » « less
  5. Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses. 
    more » « less