The overall goal of the rainfall manipulation project is to understand the coupled ecological and hydrological responses of a grassland, shrubland and a mixed grass-shrub vegetation community to extended periods of increased or decreased rainfall. Rainfall manipulation plots have been established in each of these three vegetation communities in the Five Points area of Sevilleta National Wildlife Refuge. In each vegetation community, three control plots, three drought treatment plots, and three water addition plots have been installed, each approximately 10 x 15 m in size. In each plot, vertical profiles of soil moisture probes have been installed under each cover type (canopy and interspace in grassland and shrubland; grass canopy, shrub canopy and interspace at the ecotone (mixed grass-shrub) site). The probes measure differences in infiltration and soil water content and potential associations with these different cover types. In addition, TDR probes have been installed diagonally in each cover type to integrate the water content of the top 15 cm of soil. Each plot contains 18, 1m2 quads made up of 6, 1m2 quads along each of the 3 transects located across each plot. Each spring and fall, the following parameters are measured in every quad: live plant cover, height, and abundance by species; dead plant cover; soil cover; litter cover; and rock cover. Data collection began in the drought and control plots in the spring of 2002. Data collection began in the water addition plots in the spring of 2004.In the grassland and shrubland communities, all nine currently established plots are located together. The three drought plots were located under a single large roof with a 0.5 m path separating each plot (drought treatments ended in 2006). The control plots and water addition plots are similarly grouped, but without the shelter structure. In the ecotone community, the plots are in three groups; each group is comprised of one drought plot, one water addition plot, and one control plot. Control plots received no experimental treatment, while the sliding roofs over the drought plots were used to divert precipitation, producing a long-term drought. The roofs covering the drought plots were lowered when there was no precipitation so that the amount of sunlight received by the drought plots was minimally affected. Water addition was intended to impose a complementary increase in water supply on the water addition plots.
more »
« less
Drought Impact on Desert Ecosystems, Drought Network precipitation manipulation experiment in desert grasslands
Climate change amplifies the global water cycle, making droughts more frequent and more severe. The hot deserts of the U.S. rely on the stability and frequency of water availability in order to sustain biological communities, making these ecosystems incredibly vulnerable to anticipated alterations in the water cycle. This project seeks to understand which biotic and abiotic variables are principle in determining desert ecosystem sensitivity to drought? To answer these questions, we have installed a drought manipulation that will simulate an extreme drought event by reducing annual precipitation by 66% in seven desert sites. Plant abundance data are collected annually to track changes in the plant community. Data collection began in Spring 2018. Treatments at three Sevilleta sites began in Fall 2018 after data collection in October 2018. Treatments started at four sites in Arizona and California in March and April of 2019 and spring pretreatment data collection. The treatments will last for four years.
more »
« less
- PAR ID:
- 10424094
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Associated with a project that was based upon the assumption that nitrogen may limit net primary plant production in desert grasslands, this project began measuring available inorganic soil N and potentially mineralizable N of soils at two desert grassland locations. Both available N and potentially mineralizable N were greatest following a drought period in 1989, declined during wetter periods that followed and remained relatively stable until another extended drought period. After drought in 1995-6, both forms of soil N increased, indicating the potential for greater NPP following drought and lower potential NPP during periods of normal precipitation.more » « less
-
{"Abstract":["This dataset includes plant species cover and height data measured\n in 1 m x 1 m quadrats at several sites and experiments under the\n Sevilleta LTER program. Quadrat locations span four distinct\n ecosystems and their ecotones: creosotebush dominated Chihuahuan\n Desert shrubland (est. winter 1999), black grama-dominated\n Chihuahuan Desert grassland (est. winter 1999), blue grama-dominated\n Plains grassland (est. winter 2002), and pinon-juniper woodland\n (est. winter 2003). Data on plant cover and height for each plant\n species are collected per individual plant or patch (for clonal\n plants) within 1 m x 1 m quadrats. These data inform population\n dynamics of foundational and rare plant species. In addition, using\n plant allometries, these non-destructive measurements of plant cover\n and height can be used to calculate net primary production (NPP), a\n fundamental ecosystem variable that quantifies rates of carbon\n consumption and fixation. Estimates of plant species cover, total\n plant biomass, or NPP can inform understanding of biodiversity,\n species composition, and energy flow at the community scale of\n biological organization, as well as spatial and temporal responses\n of plants to a range of ecological processes and direct experimental\n manipulations. The cover and height of individual plants or patches\n are sampled twice yearly (spring and fall) in permanent 1m x 1m\n plots within each site or experiment. This dataset includes core\n site monitoring data (CORE, GRIDS, ISOWEB, TOWER), observations in\n response to wildfire (BURN), and experimental treatments of extreme\n drought and delayed monsoon rainfall (EDGE), physical disturbance to\n biological soil crusts on the soil surface (CRUST), interannual\n variability in precipitation (MEANVAR), intra-annual variability via\n additions of monsoon rainfall (MRME), additions of nitrogen as\n ammonium nitrate (FERTILIZER), additions of nitrogen x phosphorus x\n potassium (NutNet), and interacting effects of nighttime warming,\n nitrogen addition, and El Niño winter rainfall (WENNDEx). To build\n allometric equations that relate biomass to plant cover or volume, a\n separate dataset of selectively harvested plant species is provided\n in "SEV-LTER Plant species mass data for allometry."\n Together, these datasets produce \u201cSEV-LTER Plant biomass all sites\n and experiments\u201d using the scripts posted with that dataset. Data\n from the CORE sites in this dataset were designated as NA-US-011 in\n the Global Index of Vegetation-Plot Databases (GIVD). Data from the\n TOWER sites in this dataset are linked to Ameriflux sites:\n ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and\n ameriflux.lbl.gov/sites/siteinfo/US-Ses."]}more » « less
-
There is a knowledge gap surrounding how drought and wildfire, two increasingly frequent disturbances, will alter soil fungal communities. Moreover, studies that directly compare ambient and drought-treated soil fungal communities in the context of wildfire are exceptionally scarce. We assessed the response and recovery of soil fungal communities and functional guilds in two sites – a grassland and a coastal sage shrubland – after a severe wildfire burned a long-term drought experiment. We collected soil samples at four collection dates over an eight-month period after wildfire and amplified fungal DNA. We predicted that fungal communities within the drought and ambient treatments would differ significantly across collection dates owing to differing responses to post-wildfire conditions. Richness was stable across collection dates, regardless of precipitation treatment, in both sites. Differences between treatments were significant at every collection date with respect to taxonomical community composition. Differences in community composition between collection dates within each treatment were also significant. Additionally, the monotonic trends of drought and ambient communities over time differed in strength and direction. Differences in shrubland functional guild composition across collection dates and contrasting trends suggest a drought-dependent shift after the fire. Overall, we conclude that drought mediates how soil fungal communities respond after a wildfire in the long term, however drought effects may differ across ecosystems.more » « less
-
{"Abstract":["This dataset includes estimated plant aboveground live biomass data\n measured in 1 m x 1 m quadrats at several sites and experiments\n under the Sevilleta LTER program. Quadrat locations span four\n distinct ecosystems and their ecotones: creosotebush dominated\n Chihuahuan Desert shrubland (est. winter 1999), black\n grama-dominated Chihuahuan Desert grassland (est. winter 1999), blue\n grama-dominated Plains grassland (est. winter 2002), and\n pinon-juniper woodland (est. winter 2003). Data on plant cover and\n height for each plant species are collected per individual plant or\n patch (for clonal plants) within 1 m x 1 m quadrats. These data\n inform population dynamics of foundational and rare plant species.\n Biomass is estimated using plant allometries from non-destructive\n measurements of plant cover and height, and can be used to calculate\n net primary production (NPP), a fundamental ecosystem variable that\n quantifies rates of carbon consumption and fixation. Estimates of\n plant species cover, total plant biomass, or NPP can inform\n understanding of biodiversity, species composition, and energy flow\n at the community scale of biological organization, as well as\n spatial and temporal responses of plants to a range of ecological\n processes and direct experimental manipulations. The cover and\n height of individual plants or patches are sampled twice yearly\n (spring and fall) in permanent 1m x 1m plots within each site or\n experiment. This dataset includes core site monitoring data (CORE,\n GRIDS, ISOWEB, TOWER), observations in response to wildfire (BURN),\n and experimental treatments of extreme drought and delayed monsoon\n rainfall (EDGE), physical disturbance to biological soil crusts on\n the soil surface (CRUST), interannual variability in precipitation\n (MEANVAR), intra-annual variability via additions of monsoon\n rainfall (MRME), additions of nitrogen as ammonium nitrate\n (FERTILIZER), additions of nitrogen x phosphorus x potassium\n (NutNet), and interacting effects of nighttime warming, nitrogen\n addition, and El Niño winter rainfall (WENNDEx). To build allometric\n equations that relate biomass to plant cover or volume, the dataset\n "SEV-LTER quadrat plant cover and height data all sites and\n experiments" is used with a separate dataset of selectively\n harvested plant species "SEV-LTER Plant species mass data for\n allometry." Together, these datasets produced \u201cSEV-LTER quadrat\n plant species biomass all sites and experiments\u201d using the scripts\n posted with the allometry dataset. Data from the CORE sites in this\n dataset were designated as NA-US-011 in the Global Index of\n Vegetation-Plot Databases (GIVD). Data from the TOWER sites in this\n dataset are linked to Ameriflux sites:\n ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and\n ameriflux.lbl.gov/sites/siteinfo/US-Ses."]}more » « less
An official website of the United States government
