skip to main content


Title: Soil seedbank analysis under experimental drought and delayed monsoon treatments in blue grama and black grama grassland at Sevilleta
This study investigated the question, "Does climate change affect vegetation and seed bank composition in desert grasslands?" The work was done in the Sevilleta National Wildlife Refuge, New Mexico, USA, in in the Extreme Drought in Grassland Experiment (EDGE). Vegetation and seed bank species composition were recorded in black grama (Bouteloua eriopoda) and blue grama (B. gracilis) grasslands at Sevilleta. At each site, two rainfall manipulations and ambient controls were established in 2013 (n=10). Treatments included extreme drought (-66% rainfall reduction) and delayed monsoon (precipitation captured during July-August and reapplied during September-October). Aboveground species composition was assessed and composite soil samples were collected in 2017, five years after the experiment started. Seed bank composition was evaluated using the seedling emergence method. Rainfall treatments increased aboveground species richness at both sites, and seed bank richness only in the blue grama community. Vegetation cover was reduced by both rainfall manipulations, but seed bank density increased or remained the same compared with controls. In aboveground vegetation, cover of annual and perennial forbs increased, and dominant perennial grasses decreased. In the soil seed bank, species composition was similar among all treatments and was dominated by annual and perennial forbs. The seed bank was more resistant to drought than aboveground vegetation. Because seed banks enhance long-term community stability, their drought resistance plays an important role in maintaining ecosystem processes during and following drought in these grassland communities.  more » « less
Award ID(s):
1655499 1856383
NSF-PAR ID:
10424099
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes estimated plant aboveground live biomass data measured in 1 m x 1 m quadrats at several sites and experiments under the Sevilleta LTER program. Quadrat locations span four distinct ecosystems and their ecotones: creosotebush dominated Chihuahuan Desert shrubland (est. winter 1999), black grama-dominated Chihuahuan Desert grassland (est. winter 1999), blue grama-dominated Plains grassland (est. winter 2002), and pinon-juniper woodland (est. winter 2003). Data on plant cover and height for each plant species are collected per individual plant or patch (for clonal plants) within 1 m x 1 m quadrats. These data inform population dynamics of foundational and rare plant species. Biomass is estimated using plant allometries from non-destructive measurements of plant cover and height, and can be used to calculate net primary production (NPP), a fundamental ecosystem variable that quantifies rates of carbon consumption and fixation. Estimates of plant species cover, total plant biomass, or NPP can inform understanding of biodiversity, species composition, and energy flow at the community scale of biological organization, as well as spatial and temporal responses of plants to a range of ecological processes and direct experimental manipulations. The cover and height of individual plants or patches are sampled twice yearly (spring and fall) in permanent 1m x 1m plots within each site or experiment. This dataset includes core site monitoring data (CORE, GRIDS, ISOWEB, TOWER), observations in response to wildfire (BURN), and experimental treatments of extreme drought and delayed monsoon rainfall (EDGE), physical disturbance to biological soil crusts on the soil surface (CRUST), interannual variability in precipitation (MEANVAR), intra-annual variability via additions of monsoon rainfall (MRME), additions of nitrogen as ammonium nitrate (FERTILIZER), additions of nitrogen x phosphorus x potassium (NutNet), and interacting effects of nighttime warming, nitrogen addition, and El Niño winter rainfall (WENNDEx). To build allometric equations that relate biomass to plant cover or volume, the dataset "SEV-LTER quadrat plant cover and height data all sites and experiments" is used with a separate dataset of selectively harvested plant species "SEV-LTER Plant species mass data for allometry." Together, these datasets produced “SEV-LTER quadrat plant species biomass all sites and experiments” using the scripts posted with the allometry dataset. Data from the CORE sites in this dataset were designated as NA-US-011 in the Global Index of Vegetation-Plot Databases (GIVD). Data from the TOWER sites in this dataset are linked to Ameriflux sites: ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and ameriflux.lbl.gov/sites/siteinfo/US-Ses. 
    more » « less
  2. This dataset includes plant species cover and height data measured in 1 m x 1 m quadrats at several sites and experiments under the Sevilleta LTER program. Quadrat locations span four distinct ecosystems and their ecotones: creosotebush dominated Chihuahuan Desert shrubland (est. winter 1999), black grama-dominated Chihuahuan Desert grassland (est. winter 1999), blue grama-dominated Plains grassland (est. winter 2002), and pinon-juniper woodland (est. winter 2003). Data on plant cover and height for each plant species are collected per individual plant or patch (for clonal plants) within 1 m x 1 m quadrats. These data inform population dynamics of foundational and rare plant species. In addition, using plant allometries, these non-destructive measurements of plant cover and height can be used to calculate net primary production (NPP), a fundamental ecosystem variable that quantifies rates of carbon consumption and fixation. Estimates of plant species cover, total plant biomass, or NPP can inform understanding of biodiversity, species composition, and energy flow at the community scale of biological organization, as well as spatial and temporal responses of plants to a range of ecological processes and direct experimental manipulations. The cover and height of individual plants or patches are sampled twice yearly (spring and fall) in permanent 1m x 1m plots within each site or experiment. This dataset includes core site monitoring data (CORE, GRIDS, ISOWEB, TOWER), observations in response to wildfire (BURN), and experimental treatments of extreme drought and delayed monsoon rainfall (EDGE), physical disturbance to biological soil crusts on the soil surface (CRUST), interannual variability in precipitation (MEANVAR), intra-annual variability via additions of monsoon rainfall (MRME), additions of nitrogen as ammonium nitrate (FERTILIZER), additions of nitrogen x phosphorus x potassium (NutNet), and interacting effects of nighttime warming, nitrogen addition, and El Niño winter rainfall (WENNDEx). To build allometric equations that relate biomass to plant cover or volume, a separate dataset of selectively harvested plant species is provided in "SEV-LTER Plant species mass data for allometry." Together, these datasets produce “SEV-LTER Plant biomass all sites and experiments” using the scripts posted with that dataset. Data from the CORE sites in this dataset were designated as NA-US-011 in the Global Index of Vegetation-Plot Databases (GIVD). Data from the TOWER sites in this dataset are linked to Ameriflux sites: ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and ameriflux.lbl.gov/sites/siteinfo/US-Ses. 
    more » « less
  3. Humans are creating significant global environmental change, including shifts in climate, increased nitrogen (N) deposition, and the facilitation of species invasions. A multi-factorial field experiment is being performed in an arid grassland within the Sevilleta National Wildlife Refuge (NWR) to simulate increased nighttime temperature, higher N deposition, and heightened El Niño frequency (which increases winter precipitation by an average of 50%). The purpose of the experiment is to better understand the potential effects of environmental change on grassland community composition and the growth of introduced creosote seeds and seedlings. The focus is on the response of three dominant species, all of which are near their range margins and thus may be particularly susceptible to environmental change. It is hypothesized that warmer summer temperatures and increased evaporation will favor growth of black grama (Bouteloua eriopoda), a desert grass, but that increased winter precipitation and/or available nitrogen will favor the growth of blue grama (Bouteloua gracilis), a shortgrass prairie species. Furthermore, it is thought that the growth and survival of introduced creosote (Larrea tridentata) seeds and seedlings will be promoted by heightened winter precipitation, N addition, and warmer nighttime temperatures. Treatment effects on limiting resources (soil moisture, nitrogen mineralization), species growth (photosynthetic rates, creosote shoot elongation), species abundance, and net primary production (NPP) are all being measured to determine the interactive effects of key global change drivers on arid grassland plant community dynamics. To measure above-ground NPP (i.e., the change in plant biomass, represented by stems, flowers, fruit and foliage, over time), the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV205, "Warming-El Nino-Nitrogen Deposition Experiment (WENNDEx): Seasonal Biomass and Seasonal and Annual NPP." 
    more » « less
  4. This dataset is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across four distinct ecosystems: creosote-dominant shrubland (Site C, est. winter 1999), black grama-dominant grassland (Site G, est. winter 1999), blue grama-dominant grassland (Site B, est. winter 2002), and pinon-juniper woodland (Site P, est. winter 2003). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and and foliage, over time and incoporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV182, "Seasonal Biomass and Seasonal and Annual NPP for Core Research Sites." This dataset is designated as NA-US-011 in the Global Index of Vegetation-Plot Databases (GIVD). To aid tracking of the use of databases in this index, please also reference this number when citing this data. The GIVD report for SEV129 can be found in: Biodiversity and Ecology 4 - Vegetation Databases for the 21st Century (2012) by J. Dengler et al. 
    more » « less
  5. This dataset contains pinon-juniper woodland quadrat data and is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across four distinct ecosystems: creosote-dominant shrubland (Site C, est. winter 1999), black grama-dominant grassland (Site G, est. winter 1999), blue grama-dominant grassland (Site B, est. winter 2002), and pinon-juniper woodland (Site P, est. winter 2003). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and and foliage, over time and incorporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV182, "Seasonal Biomass and Seasonal and Annual NPP for Core Research Sites." 
    more » « less