skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extreme Drought in Grassland Ecosystems (EDGE) Net Primary Production Quadrat Data at the Sevilleta National Wildlife Refuge, New Mexico
EDGE is located at six grassland sites that encompass a range of ecosystems in the Central US - from desert grasslands to short-, mixed-, and tallgrass prairie. We envision EDGE as a research platform that will not only advance our understanding of patterns and mechanisms of ecosystem sensitivity to climate change, but also will benefit the broader scientific community. Identical infrastructure for manipulating growing season precipitation will be deployed at all sites. Within the relatively large treatment plots (36 m2), we will measure with comparable methods, a broad spectrum of ecological responses particularly related to the interaction between carbon fluxes (NPP, soil respiration) and species response traits, as well as environmental parameters that are critical for the integrated experiment-modeling framework, as well as for site-based analyses. By designing EDGE as a research platform open to the broader scientific community, with subplots in all replicates (n = 180 plots) set-aside for additional studies, and by making data available to the broader ecological community EDGE will have value beyond what we envision here.  more » « less
Award ID(s):
1655499 1856383
PAR ID:
10424104
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null; null; null; null; null; null (Ed.)
    The National Ecological Observatory Network (NEON) is a continental-scale observatory with sites across the US collecting standardized ecological observations that will operate for multiple decades. To maximize the utility of NEON data, we envision edge computing systems that gather, calibrate, aggregate, and ingest measurements in an integrated fashion. Edge systems will employ machine learning methods to cross-calibrate, gap-fill and provision data in near-real time to the NEON Data Portal and to High Performance Computing (HPC) systems, running ensembles of Earth system models (ESMs) that assimilate the data. For the first time gridded EC data products and response functions promise to offset pervasive observational biases through evaluating, benchmarking, optimizing parameters, and training new ma- chine learning parameterizations within ESMs all at the same model-grid scale. Leveraging open-source software for EC data analysis, we are al- ready building software infrastructure for integration of near-real time data streams into the International Land Model Benchmarking (ILAMB) package for use by the wider research community. We will present a perspective on the design and integration of end-to-end infrastructure for data acquisition, edge computing, HPC simulation, analysis, and validation, where Artificial Intelligence (AI) approaches are used throughout the distributed workflow to improve accuracy and computational performance. 
    more » « less
  2. {"Abstract":["Begun in spring 2013, this project is part of a long-term study at\n the Sevilleta LTER measuring net primary production (NPP) across\n three distinct ecosystems: creosote-dominant shrubland (Site C),\n black grama-dominant grassland (Site G), and blue grama-dominant\n grassland (Site B). Net primary production is a fundamental\n ecological variable that quantifies rates of carbon consumption and\n fixation. Estimates of NPP are important in understanding energy\n flow at a community level as well as spatial and temporal responses\n to a range of ecological processes. Above-ground net primary\n production is the change in plant biomass, represented by stems,\n flowers, fruit and foliage, over time and incorporates growth as\n well as loss to death and decomposition. To measure this change the\n vegetation variables in this dataset, including species composition\n and the cover and height of individuals, are sampled twice yearly\n (spring and fall) at permanent 1m x 1m plots within each site. A\n third sampling at Site C is performed in the winter. The data from\n these plots is used to build regressions correlating biomass and\n volume via weights of select harvested species obtained in SEV999,\n "Net Primary Productivity (NPP) Weight Data." This biomass\n data is included in SEV999, "Seasonal Biomass and Seasonal and\n Annual NPP for Core Grid Research Sites.""]} 
    more » « less
  3. {"Abstract":["This dataset contains pinon-juniper woodland quadrat data and is\n part of a long-term study at the Sevilleta LTER measuring net\n primary production (NPP) across four distinct ecosystems:\n creosote-dominant shrubland (Site C, est. winter 1999), black\n grama-dominant grassland (Site G, est. winter 1999), blue\n grama-dominant grassland (Site B, est. winter 2002), and\n pinon-juniper woodland (Site P, est. winter 2003). Net primary\n production is a fundamental ecological variable that quantifies\n rates of carbon consumption and fixation. Estimates of NPP are\n important in understanding energy flow at a community level as well\n as spatial and temporal responses to a range of ecological\n processes. Above-ground net primary production is the change in\n plant biomass, represented by stems, flowers, fruit and and foliage,\n over time and incorporates growth as well as loss to death and\n decomposition. To measure this change the vegetation variables in\n this dataset, including species composition and the cover and height\n of individuals, are sampled twice yearly (spring and fall) at\n permanent 1m x 1m plots within each site. A third sampling at Site C\n is performed in the winter. The data from these plots is used to\n build regressions correlating biomass and volume via weights of\n select harvested species obtained in SEV157, "Net Primary\n Productivity (NPP) Weight Data." This biomass data is included\n in SEV182, "Seasonal Biomass and Seasonal and Annual NPP for\n Core Research Sites.""]} 
    more » « less
  4. These data were generated as part of a research project focused on montiroing sediment flux in dryland ecosystems following wildfire. In six separate small plots, three burned and three unburned, we conducted light detection and ranging (lidar) topographic surveys in 2016, 2017, and 2018 to document elevation changes and the volume of sediment deposition and erosion. At the down-wind edge of each plot, we used sediment catchers to trap sediment exiting the plots and thus estimate erosion volumes using in-situ equipment, which provided a secondary measurement of sediment efflux from all sites in addition to the lidar data. We used the geomorphic change detection software (https://gcd.riverscapes.xyz/) to produce maps of topographic change from the lidar digital elevation models for the 2016-2017 and 2017-2018 periods at all plots, burned and unburned. Results from this project may aid in understanding post-fire transport of sediment and nutrients from drylands following wildfire. 
    more » « less
  5. {"Abstract":["This dataset is part of a long-term study at the Sevilleta LTER\n measuring net primary production (NPP) across four distinct\n ecosystems: creosote-dominant shrubland (Site C, est. winter 1999),\n black grama-dominant grassland (Site G, est. winter 1999), blue\n grama-dominant grassland (Site B, est. winter 2002), and\n pinon-juniper woodland (Site P, est. winter 2003). Net primary\n production is a fundamental ecological variable that quantifies\n rates of carbon consumption and fixation. Estimates of NPP are\n important in understanding energy flow at a community level as well\n as spatial and temporal responses to a range of ecological\n processes. Above-ground net primary production is the change in\n plant biomass, represented by stems, flowers, fruit and and foliage,\n over time and incoporates growth as well as loss to death and\n decomposition. To measure this change the vegetation variables in\n this dataset, including species composition and the cover and height\n of individuals, are sampled twice yearly (spring and fall) at\n permanent 1m x 1m plots within each site. A third sampling at Site C\n is performed in the winter. The data from these plots is used to\n build regressions correlating biomass and volume via weights of\n select harvested species obtained in SEV157, "Net Primary\n Productivity (NPP) Weight Data." This biomass data is included\n in SEV182, "Seasonal Biomass and Seasonal and Annual NPP for\n Core Research Sites." This dataset is designated as NA-US-011\n in the Global Index of Vegetation-Plot Databases (GIVD). To aid\n tracking of the use of databases in this index, please also\n reference this number when citing this data. The GIVD report for\n SEV129 can be found in: Biodiversity and Ecology 4 - Vegetation\n Databases for the 21st Century (2012) by J. Dengler et al."]} 
    more » « less