skip to main content


Title: Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis
Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis , a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.  more » « less
Award ID(s):
1927161 1927155
NSF-PAR ID:
10424289
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
51
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rudi, Knut (Ed.)
    ABSTRACT Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants’ fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis . Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia and Paraburkholderia from 50% of the 52 colonies sampled, indicating that members of the family Burkholderiaceae are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1 cm. Genomic assessment of fungus garden-associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies. IMPORTANCE Many organisms partner with microbes to defend themselves against parasites and pathogens. Fungus-growing ants must protect Leucoagaricus spp., the fungal mutualist that provides sustenance for the ants, from a specialized fungal parasite, Escovopsis . The ants take multiple approaches, including weeding their fungus gardens to remove Escovopsis spores, as well as harboring Pseudonocardia spp., bacteria that produce antifungals that inhibit Escovopsis. In addition, a genus of bacteria commonly found in fungus gardens, Burkholderia , is known to produce secondary metabolites that inhibit Escovopsis spp. In this study, we isolated Burkholderia spp. from fungus-growing ants, assessed the isolates’ ability to inhibit Escovopsis spp., and identified two compounds responsible for inhibition. Our findings suggest that Burkholderia spp. are often found in fungus gardens, adding another possible mechanism within the fungus-growing ant system to suppress the growth of the specialized parasite Escovopsis . 
    more » « less
  2. Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants’ cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants’ garden communities. Some Escovopsis spp. have been shown to attack the ants’ cultivated fungi, and co-infections by multiple Escovopsis spp. are common in gardens in nature. Yet, little is known about how Escovopsis strains impact each other. Since microbe–microbe interactions play a central role in microbial ecology and evolution, we conducted experiments to assay the types of interactions that govern Escovopsis–Escovopsis relationships. We isolated Escovopsis strains from the gardens of 10 attine ant genera representing basal (lower) and derived groups in the attine ant phylogeny. We conducted in vitro experiments to determine the outcome of both intraclonal and interclonal Escovopsis confrontations. When paired with self (intraclonal interactions), Escovopsis isolated from lower attine colonies exhibited antagonistic (inhibitory) responses, while strains isolated from derived attine colonies exhibited neutral or mutualistic interactions, leading to a clear phylogenetic pattern of interaction outcome. Interclonal interactions were more varied, exhibiting less phylogenetic signal. These results can serve as the basis for future studies on the costs and benefits of Escovopsis coinfection, and on the genetic and chemical mechanisms that regulate the compatibility and incompatibility observed here. 
    more » « less
  3. Abstract Escovopsis is a diverse group of fungi, which are considered specialized parasites of the fungal cultivars of fungus-growing ants. The lack of a suitable taxonomic framework and phylogenetic inconsistencies have long hampered Escovopsis research. The aim of this study is to reassess the genus Escovopsis using a taxonomic approach and a comprehensive multilocus phylogenetic analysis, in order to set the basis of the genus systematics and the stage for future Escovopsis research. Our results support the separation of Escovopsis into three distinct genera. In light of this, we redefine Escovopsis as a monophyletic clade whose main feature is to form terminal vesicles on conidiophores. Consequently, E. kreiselii and E. trichodermoides were recombined into two new genera, Sympodiorosea and Luteomyces , as S . kreiselii and L . trichodermoides , respectively. This study expands our understanding of the systematics of Escovopsis and related genera, thereby facilitating future research on the evolutionary history, taxonomic diversity, and ecological roles of these inhabitants of the attine ant colonies. 
    more » « less
  4. Abstract

    Fungus‐farming ants (Hymenoptera: Formicidae) have become model systems for exploring questions regarding the evolution of symbiosis. However, robust phylogenetic studies of both the ant agriculturalists and their fungal cultivars are necessary for addressing whether or not observed ant–fungus associations are the result of coevolution and, if so, whether that coevolution has been strict or diffuse. Here we focus on the evolutionary relationships of the species within the ant genusMyrmicocryptaand of their fungal cultivars. The fungus‐farming ant genusMyrmicocryptawas created by Fr. Smith in 1860 based on a single alate queen. Since then, 31 species and subspecies have been described. Until now, the genus has not received any taxonomic treatment and the relationships of the species within the genus have not been tested. Our molecular analyses, using ∼40 putative species and six protein‐coding (nuclear and mitochondrial) gene fragments, recoverMyrmicocryptaas monophyletic and as the sister group of the genusMycocepurusForel. The speciesM. tuberculataWeber is recovered as the sister to the rest ofMyrmicocrypta. The time‐calibrated phylogeny recovers the age of stem groupMyrmicocryptaplus its sister group as 45 Ma, whereas the inferred age for the crown groupMyrmicocryptais recovered as 27 Ma. Ancestral character‐state analyses suggest that the ancestor ofMyrmicocryptahad scale‐like or squamate hairs and that, although such hairs were once considered diagnostic for the genus, the alternative state of erect simple hairs has evolved at least seven independent times. Ancestral‐state analyses of observed fungal cultivar associations suggest that the most recent common ancestor ofMyrmicocryptacultivated clade 2 fungal species and that switches to clade 1 fungi have occurred at least five times. It is our hope that these results will encourage additional species‐level phylogenies of fungus‐farming ants and their fungal cultivars, which are necessary for understanding the evolutionary processes that gave rise to agriculture in ants and that produced the current diversity of mutualistic ant–fungus interactions.

     
    more » « less
  5. null (Ed.)
    Actinobacteria belonging to the genus Pseudonocardia have evolved a close relationship with multiple species of fungus-growing ants, where these bacteria produce diverse secondary metabolites that protect the ants and their fungal mutualists from disease. Recent research has charted the phylogenetic diversity of this symbiosis, revealing multiple instances where the ants and Pseudonocardia have formed stable relationships in which these bacteria are housed on specific regions of the ant’s cuticle. Parallel chemical and genomic analyses have also revealed that symbiotic Pseudonocardia produce diverse secondary metabolites with antifungal and antibacterial bioactivities, and highlighted the importance of plasmid recombination and horizontal gene transfer for maintaining these symbiotic traits. Here, we propose a multi-level model for the evolution of Pseudonocardia and their secondary metabolites that includes symbiont transmission within and between ant colonies, and the potentially independent movement and diversification of their secondary metabolite biosynthetic genes. Because of their well-studied ecology and experimental tractability, Pseudonocardia symbionts of fungus-growing ants are an especially useful model system to understand the evolution of secondary metabolites, and also comprise a significant source of novel antibiotic and antifungal agents. 
    more » « less