skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scanning ion conductance microscopy reveals differential effect of PM2.5 exposure on A549 lung epithelial and SH-SY5Y neuroblastoma cell membranes
Numerous studies have linked a wide range of diseases including respiratory illnesses to harmful particulate matter (PM) emissions indoors and outdoors, such as incense PM and industrial PM. Because of their ability to penetrate the lower respiratory tract and the circulatory system, fine particles with diameters of 2.5 µm or less (PM2.5) are believed to be more hazardous than larger PMs. Despite the enormous number of studies focusing on the intracellular processes associated with PM2.5 exposure, there have been limited reports studying the biophysical properties of cell membranes, such as nanoscale morphological changes induced by PM2.5. Our study assesses the membrane topographical and structural effects of PM2.5 from incense PM2.5 exposure in real time on A549 lung carcinoma epithelial cells and SH-SY5Y neuroblastoma cells that had been fixed to preclude adaptive cell responses. The size distribution and mechanical properties of the PM2.5 sample were characterized with atomic force microscopy (AFM). Nanoscale morphological monitoring of the cell membranes utilizing scanning ion conductance microscopy (SICM) indicated statistically significant increasing membrane roughness at A549 cells at half an hour of exposure and visible damage at 4 h of exposure. In contrast, no significant increase in roughness was observed on SH-SY5Y cells after half an hour of PM2.5 exposure, although continued exposure to PM2.5 for up to 4 h affected an expansion of lesions already present before exposure commenced. These findings suggest that A549 cell membranes are more susceptible to structural damage by PM2.5 compared to SH-SY5Y cell membranes, corroborating more enhanced susceptibility of airway epithelial cells to exposure to PM2.5 than neuronal cells. SICM · Particulate matter · Membrane topography · Single-cell imaging  more » « less
Award ID(s):
1547723 2045839
PAR ID:
10424542
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Analytical and Bioanalytical Chemistry
ISSN:
1618-2642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Scanning ion conductance microscopy (SICM) offers the ability to obtain nanoscale resolution images of the membranes of living cells. Here, we show that a dual-barrel nanopipette probe based potentiometric SICM (P-SICM) can simultaneously map the topography and surface potential of soft, rough and heterogeneously charged surfaces under physiological conditions. This technique was validated and tested by systematic studies on model samples, and the finite element method (FEM) based simulations confirmed its surface potential sensing capability. Using the P-SICM method, we compared both the topography and extracellular potential distributions of the membranes of normal (Mela-A) and cancerous (B16) skin cells. We further monitored the structural and electrical changes of the membranes of both types of cells after exposing them to the elevated potassium ion concentration in extracellular solution, known to depolarize and damage the cell. From surface potential imaging, we revealed the dynamic appearance of heterogeneity of the surface potential of the individual cell membrane. This P-SICM method provides new opportunities to study the structural and electrical properties of cell membrane at the nanoscale. 
    more » « less
  2. Wildfire smoke, particularly particulate matter less than 2.5 microns (PM2.5), represents a major source of air pollution and a growing public health problem. PM2.5 is a general term used for any particulate < 2.5 µm; however, a wide variety of particulates with different physical and chemical properties can be formed in this size range. The health impacts of PMs are controlled by their size. Unlike larger particulates, which only enter the respiratory tract, fine PMs (<0.1 µm) can also enter the bloodstream and even pass through the blood-brain barrier. The health risks due to exposure to PM can be different for various PM phases with different physical properties, which is poorly understood. We collected wildfire smoke from more than 10 major wildfires in the Western US using active air samplers that separate particles in different size ranges (>2.5 µm - <0.25 µm). Particles were collected on filters, which are pre-weighted and loaded into the impactor. The filters were weighted and compared with the pre-weight values to calculate the mass of particles collected at each size range. Our results revealed that for all the smoke from varied wildfires, the mass of particles increased with decreasing size, with the majority (more than 50%) being less than 0.25 μm. In addition, the PM2.5 total concentration was recorded using an air quality monitor and compared to the particle size distribution in different smoke samples. The results showed that as the overall concentration of wildfire smoke decreases, the fraction of particles smaller than 0.250 microns increases even more. This suggests that these ultrafine particles not only make up the majority of PM in wildfire smoke but are also more persistent in the atmosphere, even when the total PM concentration is low. Our findings highlight the magnitude of health risks posed by PM and underscore the urgent need for effective solutions to reduce respiratory exposure in affected communities. 
    more » « less
  3. The rapid proliferation of electronic cigarettes (ECs) has raised significant concerns about their potential health effects on both users and bystanders. This study systematically investigates the impact of EC aerosol exposure on human alveolar epithelial cells (A549), considering variations in device parameters, nicotine concentration, and exposure type. Using a gravity-based air–liquid interface exposure system, we assessed cytotoxicity and epithelial barrier integrity by measuring cell viability and transepithelial electrical resistance (TEER). Our results indicate that EC aerosol exposure significantly reduces cell viability and disrupts monolayer integrity in a dose- and device-dependent manner. Notably, VUSE (pod-type) exposure led to a 16% decrease in viability and a 41% reduction in TEER, while VOOPOO (mod-type) exposure caused a 25% viability loss and a 61% reduction in TEER. Power settings played a critical role: at 60 W, cell viability dropped by 48% at 12 mg/mL nicotine concentration compared to 29% at 0 mg/mL. Moreover, under the same number of puffs (30 puffs), firsthand exposure resulted in a 73% viability decrease, whereas secondhand exposure showed a 47% reduction, indicating substantial bystander risks associated with EC usage. These findings underscore the importance of device specifications and exposure conditions in determining EC aerosol toxicity. The observed epithelial barrier disruption suggests increased vulnerability to respiratory diseases. Given the comparable toxicity of firsthand and secondhand aerosols, regulatory measures should extend beyond direct users to include bystander protection. This study highlights the urgent need for comprehensive toxicity assessments to inform public health policies on EC use. 
    more » « less
  4. Air pollution is a major global risk to human health and environment. Particle matter (PM) with diameters less than 2.5 micrometers (PM2.5) is more harmful to human health than other air pollutants because it can penetrate deeply into lungs and damage human respiratory system. A new image-based deep feature analysis method is presented in this paper for PM2.5 concentration estimation. Firstly, low level and high level features are extracted from images and their spectrums by a deep learning neural network, and then regression models are created using the extracted deep features to estimate the PM2.5 concentrations, which are future refined by the collected weather information. The proposed method was evaluated using a PM2.5 dataset with 1460 photos and the experimental results demonstrated that our method outperformed other state-of-the-art methods. 
    more » « less
  5. The initial interactions of engineered nanoparticles (NPs) with living cells are governed by physicochemical properties of the NP and the molecular composition and structure of the cell membrane. Eukaryotic cell membranes contain lipid rafts – liquid-ordered nanodomains involved in membrane trafficking and molecular signaling. However, the impact of these membrane structures on cellular interactions of NPs remains unclear. Here we investigate the role of membrane domains in the interactions of primary amine-terminated quantum dots (Qdots) with liquid-ordered domains or lipid rafts in model membranes and intact cells, respectively. Using correlative atomic force and fluorescence microscopy, we found that the Qdots preferentially localized to boundaries between liquid-ordered and liquid-disordered phases in supported bilayers. The Qdots also induced holes at these phase boundaries. Using super resolution fluorescence microscopy (STORM), we found that the Qdots preferentially co-localized with lipid rafts in the membrane of intact trout gill epithelial cells – a model cell type for environmental exposures. Our observations uncovered preferential interactions of amine-terminated Qdots with liquid-ordered domains and their boundaries, possibly due to membrane curvature at phase boundaries creating energetically favorable sites for NP interactions. The preferential interaction of the Qdots with lipid rafts supports their potential internalization via lipid raft-mediated endocytosis and interactions with raft-resident signaling molecules. 
    more » « less