skip to main content

Title: Deconvoluting Charge Transfer Mechanisms in Conducting Redox Polymer-Based Photobioelectrocatalytic Systems
Poor electrochemical communication between biocatalysts and electrodes is a ubiquitous limitation to bioelectrocatalysis efficiency. An extensive library of polymers has been developed to modify biocatalyst-electrode interfaces to alleviate this limitation. As such, conducting redox polymers (CRPs) are a versatile tool with high structural and functional tunability. While charge transport in CRPs is well characterized, the understanding of charge transport mechanisms facilitated by CRPs within decisively complex photobioelectrocatalytic systems remains very limited. This study is a comprehensive analysis that dissects the complex kinetics of photobioelectrodes into fundamental blocks based on rational assumptions, providing a mechanistic overview of charge transfer during photobioelectrocatalysis. We quantitatively compare two biohybrids of metal-free unbranched CRP (polydihydroxy aniline) and photobiocatalyst (intact chloroplasts), formed utilizing two deposition strategies ( “mixed” and “layered” depositions). The superior photobioelectrocatalytic performance of the “ layered” biohybrid compared to the “ mixed” counterpart is justified in terms of rate ( D app ), thermodynamic and kinetic barriers (H ≠ , E a ), frequency of molecular collisions ( D 0 ) during electron transport across depositions, and rate and resistance to heterogeneous electron transfer ( k 0 , R CT ). Our results indicate that the primary electron transfer mechanism across the biohybrids, constituting the unbranched CRP, is thermally activated intra- and inter-molecular electron hopping, as opposed to a non-thermally activated polaron transfer model typical for branched CRP- or conducting polymer (CP)-containing biohybrids in literature. This work underscores the significance of subtle interplay between CRP structure and deposition strategy in tuning the polymer-catalyst interfaces, and the branched/unbranched structural classification of CRPs in the bioelectrocatalysis context.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bio-electrochemical systems (BESs) are promising for renewable energy generation but remain hindered by inefficient electron transfer at electrode surfaces. As the toolbox of bio-anode materials increases, rigorous electrochemical characterization of emerging materials is needed. Here, we holistically characterize the electrochemical interaction of flavin mononucleotide (FMN), an electron shuttle in biological systems and a cofactor for oxidoreductase enzymes, with the bio-inspired mixed conducting polymer poly{3-[6′-(N-methylimidazolium)hexyl]thiophene} (P3HT-Im+). The behavior of this polymer is compared to the equivalent polymer without the histidine-like imidazolium. We find improved conductivity and charge storage in imidazolium-containing polymers beyond what is explained by differences in the electroactive area. The P3HT-Im+further shows internal charge storage but with negligible faradaic contribution, indicating that charge storage capacity may translate to improved biocatalysis non-intuitive ways. Finally, one-electron transfer is observed between FMN and glassy carbon, while a bio-similar two-electron transfer is observed for the P3HT-Im+. To our knowledge, this is the first example of a concerted two-electron transfer between FMN and an electrode interface, which we attribute to the bio-inspired, histidine-like imidazolium functional groups in the polymer. These studies demonstrate the importance of bio-relevant materials characterization when such materials are deployed in BESs.

    more » « less
  2. Mixed ion/electron conducting polymers have recently received significant interest from a number of research communities, spanning from biological to mechanical. Their ability to conduct ions and electrons in the same material enables their use in a wide range of electrochemical devices. This functionality can be used to improve performance of more traditional devices or enable completely novel ones. Herein the use of blended polymers, block copolymers, and homopolymers as mixed conducting polymer systems is discussed, with special emphasis on connecting polymer structure and morphology to mixed conduction performance. Following this discussion, the outlook for the future of this field is presented. 
    more » « less
  3. null (Ed.)
    Reversible addition–fragmentation chain-transfer (RAFT) polymerizations are one of the most versatile and powerful polymerization techniques for the synthesis of complex macromolecular architectures. While RAFT polymerizations often give polymers with narrow molecular weight distributions (MWDs), commodity plastics often have broad MWDs to give targeted properties and processability. Thus, new methods to precisely control both MWD breadth and shape are essential for fine-tuning polymer properties for next generation materials. Herein, we report a simple method for controlling polymer MWD features in thermally activated radical RAFT and redox activated cationic RAFT polymerizations by means of metered additions of chain transfer agents. 
    more » « less
  4. High-temperature solid/molten-carbonate composite represent an emerging class of CO2transport membranes to capture CO2from flue gas with advantages in flux density and selectivity over conventional solvent/sorbent- and polymer-based counterparts. While significant technical progress in these membranes has been made in the past years, a deeper fundamental understanding of CO2transport mechanisms is still limited. Aimed to bridge this gap, we here report a theoretical study on flux performances of four types of solid/molten-carbonate CO2transport membranes by analytical and numerical modeling. We found that analytical and numerical results are virtually identical for solids with single charge carrier. However, for mixed conducting solids, numerical methods are preferred since analytical methods cannot solve the nonlinear local concentrations of charge carriers. Application of numerical method to a new three-phase membrane containing a mixed conducting solid, a pure electron conducting solid and molten-carbonate reveals a ∼90% increase in CO2flux compared to the two-phase (mixed conducting solid and molten-carbonate) counterpart. The models presented here are expected to provide better fundamental insights and guidance for designing next-generation high-performance CO2transport membranes.

    more » « less
  5. Abstract

    Heterostructures obtained from layered assembly of 2D materials such as graphene and hexagonal boron nitride have potential in the development of new electronic devices. Whereas various materials techniques can now produce macroscopic scale graphene, the construction of similar size heterostructures with atomically clean interfaces is still unrealized. A primary barrier has been the inability to remove polymeric residues from the interfaces that arise between layers when fabricating heterostructures. Here, the interface cleaning problem of polymer‐contaminated heterostructures is experimentally studied from an energy viewpoint. With this approach, it is established that the interface cleaning mechanism involves a combination of thermally activated polymer residue mobilization and their mechanical actuation. This framework allows a systematic approach for fabricating record large‐area clean heterostructures from polymer‐contaminated graphene. These heterostructures provide state‐of‐the‐art electronic performance. This study opens new strategies for the scalable production of layered materials heterostructures.

    more » « less