Abstract We explore the capabilities of volcano opto‐acoustics, a promising technique for measuring explosion and infrasound resonance phenomena at open‐vent volcanoes. Joint visual and infrasound study at Yasur Volcano (Vanuatu) demonstrate that even consumer‐grade cameras are capable of recording infrasound with high fidelity. Passage of infrasonic waves, ranging from as low as 5 Pa to hundreds of Pa, from both explosions and persistent tremor, pressurizes and depressurizes ambient plumes inducing visible vaporization and condensation respectively. Optical tracking of these pressure wavefields can be used to identify spectral characteristics, which vary within Yasur's two deep craters and are distinct for explosion and tremor sources. Wavefield maps can illuminate the propagation of blasts as well as the dynamics of persistent infrasonic tremor associated with standing waves in the craters. We propose that opto‐acoustic monitoring is useful for extraction of near‐vent infrasound signal and for tracking volcanic unrest from a remote distance.
more »
« less
PORTABLE REAL-TIME VOLCANO INFRASOUND AUDITORY DISPLAY DEVICES
Active open-vent volcanoes produce intense infrasound air- waves, and volcanoes with prominent craters can create strongly resonant signals, which are inaudible to humans, and often peak around 1 Hz. Study of volcano infrasound is used to model erup- tion dynamics, the structure of volcanic craters, and can be used as a component of volcano monitoring infrastructure. We have de- veloped a portable on-site real-time sonification device that emits an audible sound in response to an infrasonic airwave. This de- vice can be used near an active volcano both as a real-time edu- cational aid and as an accessible tool for monitoring the state of volcano activity. This paper presents this device with its hardware and software implementation, its parameter mapping sonification algorithm, recommendations for its use in the field, and strategies for future improvements.
more »
« less
- Award ID(s):
- 1830976
- PAR ID:
- 10425310
- Date Published:
- Journal Name:
- Proceedings of the International Conference on Auditory Display
- Volume:
- 26
- ISSN:
- 2168-5126
- Page Range / eLocation ID:
- 1-4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Infrasound may be used to detect the approach of hazardous volcanic mudflows, known as lahars, tens of minutes before their flow fronts arrive. We have analyzed signals from more than 20 secondary lahars caused by precipitation events at Fuego Volcano during Guatemala’s rainy season in May through October of 2022. We are able to quantify the capabilities of infrasound monitoring through comparison with seismic data, time lapse camera imagery, and high-resolution video of a well-recorded event on August 17. We determine that infrasound sensors, deployed adjacent to the lahar path and in small-aperture (10 s of meters) arrays, are particularly sensitive to remote detection of lahars, including small-sized events, at distances of at least 5 km. At Fuego Volcano these detections could be used to provide timely alerts of up to 30 min before lahars arrive at a downstream monitoring site, such as in the frequently impacted Ceniza drainage. We propose that continuous infrasound monitoring, from locations adjacent to a drainage, may complement seismic monitoring and serve as a valuable tool to help identify approaching hazards. On the other hand, infrasound arrays located a kilometer or more from the lahar path can be effectively used to track a lahar’s progression.more » « less
-
Abstract Since the 1919 foundation of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), the fields of volcano seismology and acoustics have seen dramatic advances in instrumentation and techniques, and have undergone paradigm shifts in the understanding of volcanic seismo-acoustic source processes and internal volcanic structure. Some early twentieth-century volcanological studies gave equal emphasis to barograph (infrasound and acoustic-gravity wave) and seismograph observations, but volcano seismology rapidly outpaced volcano acoustics and became the standard geophysical volcano-monitoring tool. Permanent seismic networks were established on volcanoes (for example) in Japan, the Philippines, Russia, and Hawai‘i by the 1950s, and in Alaska by the 1970s. Large eruptions with societal consequences generally catalyzed the implementation of new seismic instrumentation and led to operationalization of research methodologies. Seismic data now form the backbone of most local ground-based volcano monitoring networks worldwide and play a critical role in understanding how volcanoes work. The computer revolution enabled increasingly sophisticated data processing and source modeling, and facilitated the transition to continuous digital waveform recording by about the 1990s. In the 1970s and 1980s, quantitative models emerged for long-period (LP) event and tremor sources in fluid-driven cracks and conduits. Beginning in the 1970s, early models for volcano-tectonic (VT) earthquake swarms invoking crack tip stresses expanded to involve stress transfer into the wall rocks of pressurized dikes. The first deployments of broadband seismic instrumentation and infrasound sensors on volcanoes in the 1990s led to discoveries of new signals and phenomena. Rapid advances in infrasound technology; signal processing, analysis, and inversion; and atmospheric propagation modeling have now established the role of regional (15–250 km) and remote (> 250 km) ground-based acoustic systems in volcano monitoring. Long-term records of volcano-seismic unrest through full eruptive cycles are providing insight into magma transport and eruption processes and increasingly sophisticated forecasts. Laboratory and numerical experiments are elucidating seismo-acoustic source processes in volcanic fluid systems, and are observationally constrained by increasingly dense geophysical field deployments taking advantage of low-power, compact broadband, and nodal technologies. In recent years, the fields of volcano geodesy, seismology, and acoustics (both atmospheric infrasound and ocean hydroacoustics) are increasingly merging. Despite vast progress over the past century, major questions remain regarding source processes, patterns of volcano-seismic unrest, internal volcanic structure, and the relationship between seismic unrest and volcanic processes.more » « less
-
null (Ed.)Atmospheric acoustic waves from volcanoes at infrasonic frequencies (0.01–20 Hz) can be used to estimate source parameters for hazard modeling, but signals are often distorted by wavefield interactions with topography, even at local recording distances (<15 km). We present new developments toward a simple empirical approach to estimate attenuation by topographic diffraction at reduced computational cost. We investigate the applicability of a thin screen diffraction relationship developed by Maekawa [1968, doi: https://doi.org/10.1016/0003-682X(68)90020- 0]. We use a 2D axisymmetric finite-difference method to show that this relationship accurately predicts power losses for infrasound diffraction over an idealized kilometer-scale screen; thus validating the scaling to infrasonic wavelengths. However, the Maekawa relationship overestimates attenuation for realistic volcano topography (using Sakurajima Volcano as an example). The attenuating effect of diffraction may be counteracted by constructive interference of multiple reflections along concave volcano slopes. We conclude that the Maekawa relationship is insufficient as formulated for volcano infrasound, and suggest modifications that may improve the prediction capability.more » « less
-
Abstract Volcanic tremor is a semi‐continuous seismic and/or acoustic signal that occurs at time scales ranging from seconds to years, with variable amplitudes and spectral features. Tremor sources have often been related to fluid movement and degassing processes, and are recognized as a potential geophysical precursor and co‐eruptive geophysical signal. Eruption forecasting and monitoring efforts need a fast, robust method to automatically detect, characterize, and catalog volcanic tremor. Here we develop VOlcano Infrasound and Seismic Spectrogram Network (VOISS‐Net), a pair of convolutional neural networks (one for seismic, one for acoustic) that can detect tremor in near real‐time and classify it according to its spectral signature. Specifically, we construct an extensive data set of labeled seismic and low‐frequency acoustic (infrasound) spectrograms from the 2021–2022 eruption of Pavlof Volcano, Alaska, and use it to train VOISS‐Net to differentiate between different tremor types, explosions, earthquakes and noise. We use VOISS‐Net to classify continuous data from past Pavlof Volcano eruptions (2007, 2013, 2014, 2016, and 2021–2022). VOISS‐Net achieves an 81.2% and 90.0% accuracy on the seismic and infrasound test sets respectively, and successfully characterizes tremor sequences for each eruption. By comparing the derived seismoacoustic timelines of each eruption with the corresponding eruption chronologies compiled by the Alaska Volcano Observatory, our model identifies changes in tremor regimes that coincide with observed volcanic activity. VOISS‐Net can aid tremor‐related monitoring and research by making consistent tremor catalogs more accessible.more » « less
An official website of the United States government

