Abstract Neural network quantum states provide a novel representation of the many-body states of interacting quantum systems and open up a promising route to solve frustrated quantum spin models that evade other numerical approaches. Yet its capacity to describe complex magnetic orders with large unit cells has not been demonstrated, and its performance in a rugged energy landscape has been questioned. Here we apply restricted Boltzmann machines (RBMs) and stochastic gradient descent to seek the ground states of a compass spin model on the honeycomb lattice, which unifies the Kitaev model, Ising model and the quantum 120° model with a single tuning parameter. We report calculation results on the variational energy, order parameters and correlation functions. The phase diagram obtained is in good agreement with the predictions of tensor network ansatz, demonstrating the capacity of RBMs in learning the ground states of frustrated quantum spin Hamiltonians. The limitations of the calculation are discussed. A few strategies are outlined to address some of the challenges in machine learning frustrated quantum magnets. 
                        more » 
                        « less   
                    
                            
                            Scalable neural quantum states architecture for quantum chemistry
                        
                    
    
            Abstract Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations forab-initioquantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2038030
- PAR ID:
- 10425411
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Machine Learning: Science and Technology
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2632-2153
- Page Range / eLocation ID:
- Article No. 025034
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Computing excited-state properties of molecules and solids is considered one of the most important near-term applications of quantum computers. While many of the current excited-state quantum algorithms differ in circuit architecture, specific exploitation of quantum advantage, or result quality, one common feature is their rooting in the Schrödinger equation. However, through contracting (or projecting) the eigenvalue equation, more efficient strategies can be designed for near-term quantum devices. Here we demonstrate that when combined with the Rayleigh–Ritz variational principle for mixed quantum states, the ground-state contracted quantum eigensolver (CQE) can be generalized to compute any number of quantum eigenstates simultaneously. We introduce twoexcited-state(anti-Hermitian) CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm, such as its scalability. To showcase our approach, we study several model and chemical Hamiltonians and investigate the performance of different implementations.more » « less
- 
            Abstract Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.more » « less
- 
            Convolutional neural networks (CNNs) have been employed along with variational Monte Carlo methods for finding the ground state of quantum many-body spin systems with great success. However, it remains uncertain how CNNs, with a model complexity that scales at most linearly with the number of particles, solve the “curse of dimensionality” and efficiently represent wavefunctions in exponentially large Hilbert spaces. In this work, we use methodologies from information theory, group theory and machine learning, to elucidate how CNN captures relevant physics of quantum systems. We connect CNNs to a class of restricted maximum entropy (MaxEnt) and entangled plaquette correlator product state (EP-CPS) models that approximate symmetry constrained classical correlations between subsystems. For the final part of the puzzle, inspired by similar analyses for matrix product states and tensor networks, we show that the CNNs rely on the spectrum of each subsystem's entanglement Hamiltonians as captured by the size of the convolutional filter. All put together, these allow CNNs to simulate exponential quantum wave functions using a model that scales at most linear in system size as well as provide clues into when CNNs might fail to simulate Hamiltonians. We incorporate our insights into a new training algorithm and demonstrate its improved efficiency, accuracy, and robustness. Finally, we use regression analysis to show how the CNNs solutions can be used to identify salient physical features of the system that are the most relevant to an efficient approximation. Our integrated approach can be extended to similarly analyzing other neural network architectures and quantum spin systems. Published by the American Physical Society2025more » « less
- 
            Abstract We consider information spreading measures in randomly initialized variational quantum circuits and introduce entanglement diagnostics for efficient variational quantum/classical computations. We establish a robust connection between entanglement measures and optimization accuracy by solving two eigensolver problems for Ising Hamiltonians with nearest-neighbor and long-range spin interactions. As the circuit depth affects the average entanglement of random circuit states, the entanglement diagnostics can identify a high-performing depth range for optimization tasks encoded in local Hamiltonians. We argue, based on an eigensolver problem for the Sachdev–Ye–Kitaev model, that entanglement alone is insufficient as a diagnostic to the approximation of volume-law entangled target states and that a large number of circuit parameters is needed for such an optimization task.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
