Over the past decade, museum genomics studies have focused on obtaining DNA of sufficient quality and quantity for sequencing from fluid-preserved natural history specimens, primarily to be used in systematic studies. While these studies have opened windows to evolutionary and biodiversity knowledge of many species worldwide, published works often focus on the success of these DNA sequencing efforts, which is undoubtedly less common than obtaining minimal or sometimes no DNA or unusable sequence data from specimens in natural history collections. Here, we attempt to obtain and sequence DNA extracts from 115 fresh and 41 degraded samples of homalopsid snakes, as well as from two degraded samples of a poorly known snake, Hydrablabes periops . Hydrablabes has been suggested to belong to at least two different families (Natricidae and Homalopsidae) and with no fresh tissues known to be available, intractable museum specimens currently provide the only opportunity to determine this snake’s taxonomic affinity. Although our aim was to generate a target-capture dataset for these samples, to be included in a broader phylogenetic study, results were less than ideal due to large amounts of missing data, especially using the same downstream methods as with standard, high-quality samples. However, rather than discount results entirely, we used mapping methods with references and pseudoreferences, along with phylogenetic analyses, to maximize any usable molecular data from our sequencing efforts, identify the taxonomic affinity of H. periops , and compare sequencing success between fresh and degraded tissue samples. This resulted in largely complete mitochondrial genomes for five specimens and hundreds to thousands of nuclear loci (ultra-conserved loci, anchored-hybrid enrichment loci, and a variety of loci frequently used in squamate phylogenetic studies) from fluid-preserved snakes, including a specimen of H. periops from the Field Museum of Natural History collection. We combined our H. periops data with previously published genomic and Sanger-sequenced datasets to confirm the familial designation of this taxon, reject previous taxonomic hypotheses, and make biogeographic inferences for Hydrablabes . A second H. periops specimen, despite being seemingly similar for initial raw sequencing results and after being put through the same protocols, resulted in little usable molecular data. We discuss the successes and failures of using different pipelines and methods to maximize the products from these data and provide expectations for others who are looking to use DNA sequencing efforts on specimens that likely have degraded DNA. Life Science Identifier ( Hydrablabes periops ) urn:lsid:zoobank.org :pub:F2AA44 E2-D2EF-4747-972A-652C34C2C09D. 
                        more » 
                        « less   
                    
                            
                            Assessment of targeted enrichment locus capture across time and museums using odonate specimens
                        
                    
    
            Abstract The use of gDNAs isolated from museum specimens for high throughput sequencing, especially targeted sequencing in the context of phylogenetics, is a common practice. Yet, little understanding has been focused on comparing the quality of DNA and results of sequencing museum DNAs. Dragonflies and damselflies are ubiquitous in freshwater ecosystems and are commonly collected and preserved insects in museum collections hence their use in this study. However, the history of odonate preservation across time and museums has resulted in wide variability in the success of viable DNA extraction, necessitating an assessment of their usefulness in genetic studies. Using Anchored Hybrid Enrichment probes, we sequenced DNA from samples at 2 museums, 48 from the American Museum of Natural History (AMNH) in NYC, USA and 46 from the Naturalis Biodiversity Center (RMNH) in Leiden, Netherlands ranging from global collection localities and across a 120-year time span. We recovered at least 4 loci out of an >1,000 locus probe set for all samples, with the average capture being ~385 loci (539 loci on average when a clade of ambiguous taxa omitted). Neither specimen age nor size was a good predictor of locus capture, but recapture rates differed significantly between museums. Samples from the AMNH had lower overall locus capture than the RMNH, perhaps due to differences in specimen storage over time. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10425412
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Insect Systematics and Diversity
- Volume:
- 7
- Issue:
- 3
- ISSN:
- 2399-3421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Next-generation sequencing (NGS) technologies have revolutionized phylogenomics by decreasing the cost and time required to generate sequence data from multiple markers or whole genomes. Further, the fragmented DNA of biological specimens collected decades ago can be sequenced with NGS, reducing the need for collecting fresh specimens. Sequence capture, also known as anchored hybrid enrichment, is a method to produce reduced representation libraries for NGS sequencing. The technique uses single-stranded oligonucleotide probes that hybridize with pre-selected regions of the genome that are sequenced via NGS, culminating in a dataset of numerous orthologous loci from multiple taxa. Phylogenetic analyses using these sequences have the potential to resolve deep and shallow phylogenetic relationships. Identifying the factors that affect sequence capture success could save time, money, and valuable specimens that might be destructively sampled despite low likelihood of sequencing success. We investigated the impacts of specimen age, preservation method, and DNA concentration on sequence capture (number of captured sequences and sequence quality) while accounting for taxonomy and extracted tissue type in a large-scale butterfly phylogenomics project. This project used two probe sets to extract 391 loci or a subset of 13 loci from over 6,000 butterfly specimens. We found that sequence capture is a resilient method capable of amplifying loci in samples of varying age (0–111 years), preservation method (alcohol, papered, pinned), and DNA concentration (0.020 ng/μl - 316 ng/ul). Regression analyses demonstrate that sequence capture is positively correlated with DNA concentration. However, sequence capture and DNA concentration are negatively correlated with sample age and preservation method. Our findings suggest that sequence capture projects should prioritize the use of alcohol-preserved samples younger than 20 years old when available. In the absence of such specimens, dried samples of any age can yield sequence data, albeit with returns that diminish with increasing age.more » « less
- 
            Abstract Museum specimens collected prior to cryogenic tissue storage are increasingly being used as genetic resources, and though high‐throughput sequencing is becoming more cost‐efficient, whole genome sequencing (WGS) of historical DNA (hDNA) remains inefficient and costly due to its short fragment sizes and high loads of exogenous DNA, among other factors. It is also unclear how sequencing efficiency is influenced by DNA sources. We aimed to identify the most efficient method and DNA source for collecting WGS data from avian museum specimens. We analyzed low‐coverage WGS from 60 DNA libraries prepared from four American Robin ( Turdus migratorius ) and four Abyssinian Thrush ( Turdus abyssinicus ) specimens collected in the 1920s. We compared DNA source (toepad versus incision‐line skin clip) and three library preparation methods: (1) double‐stranded DNA (dsDNA), single tube (KAPA); (2) single‐stranded DNA (ssDNA), multi‐tube (IDT); and (3) ssDNA, single tube (Claret Bioscience). We found that the ssDNA, multi‐tube method resulted in significantly greater endogenous DNA content, average read length, and sequencing efficiency than the other tested methods. We also tested whether a predigestion step reduced exogenous DNA in libraries from one specimen per species and found promising results that warrant further study. The ~10% increase in average sequencing efficiency of the best‐performing method over a commonly implemented dsDNA library preparation method has the potential to significantly increase WGS coverage of hDNA from bird specimens. Future work should evaluate the threshold for specimen age at which these results hold and how the combination of library preparation method and DNA source influence WGS in other taxa.more » « less
- 
            Abstract Multi‐locus sequence data are widely used in fungal systematic and taxonomic studies to delimit species and infer evolutionary relationships. We developed and assessed the efficacy of a multi‐locus pooled sequencing method using PacBio long‐read high‐throughput sequencing. Samples included fresh and dried voucher specimens, cultures and archival DNA extracts of Agaricomycetes with an emphasis on the order Cantharellales. Of the 283 specimens sequenced, 93.6% successfully amplified at one or more loci with a mean of 3.3 loci amplified. Our method recovered multiple sequence variants representing alleles of rDNA loci and single copy protein‐coding genesrpb1,rpb2 andtef1. Within‐sample genetic variation differed by locus and taxonomic group, with the greatest genetic divergence observed among sequence variants ofrpb2 andtef1 from corticioid Cantharellales. Our method is a cost‐effective approach for generating accurate multi‐locus sequence data coupled with recovery of alleles from polymorphic samples and multi‐organism specimens. These results have important implications for understanding intra‐individual genomic variation among genetic loci commonly used in species delimitation of fungi.more » « less
- 
            Abstract Large ancient DNA (aDNA) studies offer the chance to examine genomic changes over time, providing direct insights into human evolution. While recent studies have used time-stratified aDNA for selection scans, most focus on single-locus methods. We conducted a multi-locus genotype scan on 708 samples spanning 7000 years of European history. We show that the G12 statistic, originally designed for unphased diploid data, can effectively detect selection in aDNA processed to create ‘pseudo-haplotypes’. In simulations and at known positive control loci (e.g., lactase persistence), G12 outperforms the allele frequency-based selection statistic, SweepFinder2, previously used on aDNA. Applying our approach, we identified 14 candidate regions of selection across four time periods, with half the signals detectable only in the earliest period. Our findings suggest that selective events in European prehistory, including from the onset of animal domestication, have been obscured by neutral processes like genetic drift and demographic shifts such as admixture.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
