skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Addition of dissolved inorganic carbon stimulates snow algae primary productivity on glacially eroded carbonate bedrock in the Medicine Bow Mountains, WY, USA
Abstract

Snow is a critical component of the Earth system. High-elevation snow can persist into the spring, summer, and early fall and hosts a diverse array of life, including snow algae. Due in part to the presence of pigments, snow algae lower albedo and accelerate snow melt, which has led to increasing interest in identifying and quantifying the environmental factors that constrain their distribution. Dissolved inorganic carbon (DIC) concentration is low in supraglacial snow on Cascade stratovolcanoes, and snow algae primary productivity can be stimulated through DIC addition. Here we asked if inorganic carbon would be a limiting nutrient for snow hosted on glacially eroded carbonate bedrock, which could provide an additional source of DIC. We assayed snow algae communities for nutrient and DIC limitation on two seasonal snowfields on glacially eroded carbonate bedrock in the Snowy Range of the Medicine Bow Mountains, Wyoming, United States. DIC stimulated snow algae primary productivity in snow with lower DIC concentration despite the presence of carbonate bedrock. Our results support the hypothesis that increased atmospheric CO2 concentrations may lead to larger and more robust snow algae blooms globally, even for sites with carbonate bedrock.

 
more » « less
PAR ID:
10425422
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
FEMS Microbiology Ecology
Volume:
99
Issue:
7
ISSN:
1574-6941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Producer–decomposer interactions within aquatic biofilms can range from mutualistic associations to competition depending on available resources. The outcomes of such interactions have implications for biogeochemical cycling and, as such, may be especially important in northern peatlands, which are a global carbon sink and are expected to experience changes in resource availability with climate change. The purpose of this study was to evaluate the effects of nutrients and organic carbon on the relative proportion of primary producers (microalgae) and heterotrophic decomposers (bacteria and fungi) during aquatic biofilm development in a boreal peatland. Given that decomposers are often better competitors for nutrients than primary producers in aquatic ecosystems, we predicted that labile carbon subsidies would shift the biofilm composition towards heterotrophy owing to the ability of decomposers to outcompete primary producers for available nutrients in the absence of carbon limitation.

    We manipulated nutrients (nitrate and phosphate) and organic carbon (glucose) in a full factorial design using nutrient‐diffusing substrates in an Alaskan fen.

    Heterotrophic bacteria were limited by organic carbon and algae were limited by inorganic nutrients. However, the outcomes of competitive interactions depended on background nutrient levels. Heterotrophic bacteria were able to outcompete algae for available nutrients when organic carbon was elevated and nutrient levels remained low, but not when organic carbon and nutrients were both elevated through enrichment.

    Fungal biomass was significantly lower in the presence of glucose alone, possibly owing to antagonistic interactions with heterotrophic bacteria. In contrast to bacteria, fungi were stimulated along with algae following nutrient enrichment.

    The decoupling of algae and heterotrophic bacteria in the presence of glucose alone shifted the biofilm trophic status towards heterotrophy. This effect was overturned when nutrients were enriched along with glucose, owing to a subsequent increase in algal biomass in the absence of nutrient limitation.

    By measuring individual components of the biofilm and obtaining data on the trophic status, we have begun to establish a link between resource availability and biofilm formation in northern peatlands. Our results show that labile carbon subsidies from outside sources have the potential to disrupt microbial coupling and shift the metabolic balance in favour of heterotrophy. The extent to which this occurs in the future will probably depend on the timing and composition of bioavailable nutrients delivered to surface waters with environmental change (e.g. permafrost thaw).

     
    more » « less
  2. Abstract

    At broad spatial scales, primary productivity in lakes is known to increase in concert with nutrients, and variables that may disrupt or modify the tight coupling of nutrients and algae are of increasing interest, particularly for those shifting with climate change. Storms may disrupt algae–nutrient relationships, but the expected effects differ between winter and summer seasons, particularly for seasonally ice‐covered lakes. In winter, storms can dramatically change the under‐ice light environment, creating light limitation that disrupts algae–nutrient relationships. Further, storms can bring both snow that blocks light and also wind that blows snow off of ice. In open water conditions, storms may promote turbulence and external nutrient loading. Here, we test the hypotheses that winter and summer storms differentially affect algae–nutrient relationships across 84 seasonally ice‐covered lakes included in the Ecology Under Lake Ice dataset. While nutrients explained most of the variation in chlorophyll across these lakes, we found that secondary drivers differed between seasons. Under‐ice chlorophyll was higher under a variety of precipitation and wind conditions that tend to promote snow‐free clear ice, highlighting the importance of light as a limiting factor for algal growth during winter. In summer, higher water temperatures and storms corresponded with higher chlorophyll. Our study suggests that examining ice‐covered lakes in a gradient from the perennial ice cover of the poles to the intermittent ice cover of lower latitudes would yield key information on the shifts in light and nutrient limitation that control algal biomass.

     
    more » « less
  3. Abstract

    Soils are widely considered the primary terrestrial organic matter pool mediating carbon transactions with the atmosphere and groundwater. Because soils are both a host and a product of rhizosphere activity, they are thought to mark the location where photosynthetic fixation of carbon dioxide (CO2) is balanced by the oxidation of organic matter. However, in many terrestrial environments, the rhizosphere extends below soils and into fractured bedrock, and it is unknown if the resulting biological and hydrologic dynamics in bedrock have a significant impact on carbon cycling. Here we show substantial production of CO2in weathered bedrock at 4–8 m below the thin soils (<0.5 m thick) of a Northern California forest using innovative monitoring technology for sampling gases and water in fractured rock. The deep CO2production supports a persistent upward flux of CO2(g)year‐round from bedrock to soil, constituting between 2% and 29% of the average daily CO2efflux from the land surface. When water is rapidly transported across the fractured bedrock vadose zone, nearly 50% of the CO2produced in the bedrock dissolves into water, promoting water‐rock interaction and export of dissolved inorganic carbon (DIC) from the unsaturated zone to groundwater, constituting as much as 80% of the DIC exiting the hillslope. Such CO2production in weathered bedrock is subject to unique moisture, temperature, biological, and mineralogical conditions which are currently missing from terrestrial carbon models.

     
    more » « less
  4. Abstract

    Variations in estuarine carbonate chemistry can have critical impacts on marine calcifying organisms, yet the drivers of this variability are difficult to quantify from observations alone, due to the strong spatiotemporal variability of these systems. Terrestrial runoff and wetland processes vary year to year based on local precipitation, and estuarine processes are often strongly modulated by tides. In this study, a 3D-coupled hydrodynamic-biogeochemical model is used to quantify the controls on the carbonate system of a coastal plain estuary, specifically the York River estuary. Experiments were conducted both with and without tidal wetlands. Results show that on average, wetlands account for 20–30% of total alkalinity (TA) and dissolved inorganic carbon (DIC) fluxes into the estuary, and double-estuarine CO2outgassing. Strong quasi-monthly variability is driven by the tides and causes fluctuations between net heterotrophy and net autotrophy. On longer time scales, model results show that in wetter years, lower light availability decreases primary production relative to biological respiration (i.e., greater net heterotrophy) resulting in substantial increases in CO2outgassing. Additionally, in wetter years, advective exports of DIC and TA to the Chesapeake Bay increase by a factor of three to four, resulting in lower concentrations of DIC and TA within the estuary. Quantifying the impacts of these complex drivers is not only essential for a better understanding of coastal carbon and alkalinity cycling, but also leads to an improved assessment of the health and functioning of coastal ecosystems both in the present day and under future climate change.

     
    more » « less
  5. Abstract

    Sources of dissolved and particulate carbon to the Fraser River system vary significantly in space and time. Tributaries in the northern interior of the basin consistently deliver higher concentrations of dissolved organic carbon (DOC) to the main stem than other tributaries. Based on samples collected near the Fraser River mouth throughout 2013, the radiocarbon age of DOC exported from the Fraser River does not change significantly across seasons despite a spike in DOC concentration during the freshet, suggesting modulation of heterogeneous upstream chemical and isotopic signals during transit through the river basin. Dissolved inorganic carbon (DIC) concentrations are highest in the Rocky Mountain headwater region where carbonate weathering is evident, but also in tributaries with high DOC concentrations, suggesting that DOC respiration may be responsible for a significant portion of DIC in this basin. Using an isotope and major ion mass balance approach to constrain the contributions of carbonate and silicate weathering and DOC respiration, we estimate that up to 33 ± 11% of DIC is derived from DOC respiration in some parts of the Fraser River basin. Overall, these results indicate close coupling between the cycling of DOC and DIC, and that carbon is actively processed and transformed during transport through the river network.

     
    more » « less