Abstract Understanding the relationship between protein structure and function is a core‐learning goal in biochemistry. Students often struggle to visualize proteins as three‐dimensional objects that interact with other molecules to affect its biochemical consequences. We describe here a partial course‐based undergraduate research experiences that has students exploring protein structure and function hands‐on while authoring a molecular case study intended for others to use.
more »
« less
From COVID-19 to the Central Dogma
Students often struggle with visualizing protein structures when working with two-dimensional textbook and lecture materials, so introducing them to 3D visualization software developed by and for structural biologists offers them a unique opportunity to work with authentic data while furthering their spatial reasoning skills and understanding of molecular structure and function. This article presents an active learning virtual laboratory in which students use authentic structural biology data to investigate the effects of both hypothetical and real-world SARS-CoV-2 mutations on the virus’s ability to bind to human ACE2 receptors and infect a host, causing COVID-19. Through this activity, introductory-level college students or advanced high school students gain a better understanding of applied biology, such as how vaccines and treatments are designed, as well as strengthening their understanding of core disciplinary concepts, such as the relationship between protein structure and function and the central dogma of molecular biology. While there were challenges during the pilot phase of activity development due to COVID-19 restrictions, students in the pilot groups came away from the activity with deeper understanding of the relationship between proteins and amino acid sequences and a new appreciation for the ways researchers design treatments for and study viruses.
more »
« less
- Award ID(s):
- 1856502
- PAR ID:
- 10425435
- Date Published:
- Journal Name:
- The American Biology Teacher
- Volume:
- 84
- Issue:
- 7
- ISSN:
- 0002-7685
- Page Range / eLocation ID:
- 410 to 414
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structural biology has provided valuable insights and high-resolution views of the biophysical processes in plants, such as photosynthesis, hormone signaling, nutrient transport, and toxin efflux. However, structural biology only provides a few “snapshots” of protein structure, whereas in vivo, protein function involves complex dynamical processes such as ligand binding and conformational changes that structures alone are unable to capture in full detail. Here, we present all-atom molecular dynamics (MD) simulations as a “computational microscope” that can be used to capture detailed structural and dynamical information about the molecular machinery in plants and gain high-resolution insights into plant growth and function. In addition to the background information provided here, we have prepared a set of tutorials that allow students to run and explore MD simulations of plant proteins.more » « less
-
In light of the coronavirus disease 2019 (COVID-19), recent clinical research has demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects breathing and internal organs, especially the kidneys and liver function. It is evident that the kidneys are induced by the virus through the course of the medication treatments, such as the side effects that lead to kidney and liver damage. In order to scaffold kidney pathophysiology with normal kidney development and function in a virtual class or lab setting during the COVID-19 pandemic, we have developed a hands-on and cost-effective clay modeling teaching tool at the undergraduate level for learning about kidney anatomy and development. Given remote teaching, this innovative tool can be used to link the structure to molecular and cellular function through an easy hands-on model for both learning and teaching demonstration for all students.more » « less
-
Abstract Understanding the molecular evolution of the SARS‐CoV‐2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three‐dimensional structures of SARS‐CoV‐2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID‐19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein–protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi‐Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein–protein and protein–nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure‐based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.more » « less
-
Although COVID-19 transmission has been reduced by the advent of vaccinations and a variety of rapid monitoring techniques, the SARS-CoV-2 virus itself has shown a remarkable ability to mutate and persist. With this long track record of immune escape, researchers are still exploring prophylactic treatments to curtail future SARS-CoV-2 variants. Specifically, much focus has been placed on the antiviral lectin Griffithsin in preventing spike protein-mediated infection via the hACE2 receptor (direct infection). However, an oft-overlooked aspect of SARS-CoV-2 infection is viral capture by attachment receptors such as DC-SIGN, which is thought to facilitate the initial stages of COVID-19 infection in the lung tissue (called trans-infection). In addition, while immune escape is dictated by mutations in the spike protein, coronaviral virions also incorporate M, N, and E structural proteins within the particle. In this paper, we explored how several structural facets of both the SARS-CoV-2 virion and the antiviral lectin Griffithsin can affect and attenuate the infectivity of SARS-CoV-2 pseudovirus. We found that Griffithsin was a better inhibitor of hACE2-mediated direct infection when the coronaviral M protein is present compared to when it is absent (possibly providing an explanation regarding why Griffithsin shows better inhibition against authentic SARS-CoV-2 as opposed to pseudotyped viruses, which generally do not contain M) and that Griffithsin was not an effective inhibitor of DC-SIGN-mediated trans-infection. Furthermore, we found that DC-SIGN appeared to mediate trans-infection exclusively via binding to the SARS-CoV-2 spike protein, with no significant effect observed when other viral proteins (M, N, and/or E) were present. These results provide etiological data that may help to direct the development of novel antiviral treatments, either by leveraging Griffithsin binding to the M protein as a novel strategy to prevent SARS-CoV-2 infection or by narrowing efforts to inhibit trans-infection to focus on DC-SIGN binding to SARS-CoV-2 spike protein.more » « less
An official website of the United States government

