skip to main content

Title: Morpho-functional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths
Abstract The morphological architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features enhance light capture under low-light environments. Utilizing micro-computed tomography scanning, we conducted a novel comprehensive three-dimensional (3D) assessment of the small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (4–5 m) and mesophotic (45–50 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite scale, we developed 3D simulations of light propagation and photosynthesis. We found that microstructural features of corallites from mesophotic corals provide a greater ability to use solar energy under light-limited conditions; while corals associated with shallow morphotypes avoided excess light through self-shading skeletal architectures. The results from our study suggest that skeleton morphology plays a key role in coral photoadaptation to light-limited environments.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Communications Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While the effects of irradiance on coral productivity are well known, corals along a shallow to mesophotic depth gradient (10–100 m) experience incident irradiances determined by the optical properties of the water column, coral morphology, and reef topography.

    Modeling of productivity (i.e., carbon fixation) using empirical data shows that hemispherical colonies photosynthetically fix significantly greater amounts of carbon across all depths, and throughout the day, compared with plating and branching morphologies. In addition, topography (i.e., substrate angle) further influences the rate of productivity of corals but does not change the hierarchy of coral morphologies relative to productivity.

    The differences in primary productivity for different coral morphologies are not, however, entirely consistent with the known ecological distributions of these coral morphotypes in the mesophotic zone as plating corals often become the dominant morphotype with increasing depth.

    Other colony‐specific features such as skeletal scattering of light, Symbiodiniaceae species, package effect, or tissue thickness contribute to the variability in the ecological distributions of morphotypes over the depth gradient and are captured in the metric known as the minimum quantum requirements.

    Coral morphology is a strong proximate cause for the observed differences in productivity, with secondary effects of reef topography on incident irradiances, and subsequently the community structure of mesophotic corals.

    more » « less
  2. null (Ed.)
    Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30–150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ 15 N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a , lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial. 
    more » « less
  3. In mesophotic coral ecosystems, reef-building corals and their photosynthetic symbionts can survive with less than 1% of surface irradiance. How depth-specialist corals rely upon autotrophically and heterotrophically derived energy sources across the mesophotic zone remains unclear. We analysed the stable carbon (δ13C) and nitrogen (δ15N) isotope values of aLeptoseriscommunity from the ‘Au‘au Channel, Maui, Hawai‘i (65–125 m) including four coral host species living symbiotically with three algal haplotypes. We characterized the isotope values of hosts and symbionts across species and depth to compare trophic strategies. Symbiontδ13C was consistently 0.5‰ higher than hostδ13C at all depths. Mean colony host and symbiontδ15N differed by up to 3.7‰ at shallow depths and converged at deeper depths. These results suggest that both heterotrophy and autotrophy remained integral to colony survival across depth. The increasing similarity between host and symbiontδ15N at deeper depths suggests that nitrogen is more efficiently shared between mesophotic coral hosts and their algal symbionts to sustain autotrophy. Isotopic trends across depth did not generally vary by host species or algal haplotype, suggesting that photosynthesis remains essential toLeptoserissurvival and growth despite low light availability in the mesophotic zone.

    more » « less
  4. As the devastating impacts of global climate change and local anthropogenic stressors on shallow-water coral reefs are expected to rise, mesophotic coral ecosystems have increasingly been regarded as potential lifeboats for coral survival, providing a source of propagules to replenish shallower reefs. Yet, there is still limited knowledge of the capacity for coral larvae to adjust to light intensities that change with depth. This study elucidates the mechanisms underlying plasticity during early life stages of the coral Porites astreoides that enable survival across broad depth gradients. We examined physiological and morphological variations in larvae from shallow (8–10 m) and mesophotic (45 m) reefs in Bermuda, and evaluated differences in survival, settlement patterns and size among recruits depending on light conditions using a reciprocal ex situ transplantation experiment. Larvae released from mesophotic adults were found to have significantly lower respiration rates and were significantly larger than those derived from shallow adults, indicating higher content of energetic resources and suggesting a greater dispersal potential for mesophotic larvae compared to their shallow counterparts. Additionally, larvae released from mesophotic adults experienced higher settlement success and larger initial spat size compared to larvae from shallow adults, demonstrating a potential connection between parental origin, offspring quality, and recruitment success. Although both shallow and mesophotic larvae exhibited the capacity to survive and settle under reciprocal light conditions, all larvae had higher survival under mesophotic light conditions regardless of parental origin, suggesting that conditions experienced under low light may enable longer larval life, further extending the dispersal period. These results indicate that larvae from mesophotic Porites astreoides colonies are likely capable of reseeding shallow reefs in Bermuda, thereby supporting the Deep Reef Refugia Hypothesis. 
    more » « less
  5. Mesophotic coral reefs, generally defined as deep reefs between 30 and 150 m, are found worldwide and are largely structured by changes in the underwater light field. Additionally, it is increasingly understood that reef-to-reef variability in topography, combined with quantitative and qualitative changes in the underwater light field with increasing depth, significantly influence the observed changes in coral distribution and abundance. Here, we take a modeling approach to examine the effects of the inherent optical properties of the water column on the irradiance that corals are exposed to along a shallow to mesophotic depth gradient. In particular, the roles of reef topography including horizontal, sloping and vertical substrates are quantified, as well as the differences between mounding, plating and branching colony morphologies. Downwelling irradiance and reef topography interact such that for a water mass of similar optical properties, the irradiance reaching the benthos varies significantly with topography (i.e. substrate angle). Coral morphology, however, is also a factor; model results show that isolated hemispherical colonies consistently ‘see’ greater incident irradiances across depths, and throughout the day, compared to plating and branching morphologies. These modeled geometric-based differences in the incident irradiances on different coral morphologies are not, however, consistent with actual depth-dependent distributions of these coral morphotypes, where plating morphologies dominate as you go deeper. Other factors, such as the cost of calcification, arguably contribute to these differences, but irradiance-driven patterns are a strong proximate cause for the observed differences in mesophotic communities on sloping versus vertical reef substrates. 
    more » « less