skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural and Spectroscopic Studies of Steric and Electronic Substituent Effects in a Series of Magnesium Aminodiboranates Mg[(BH 3 ) 2 NMeR] 2
Award ID(s):
1954745
PAR ID:
10425573
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
62
Issue:
7
ISSN:
0020-1669
Page Range / eLocation ID:
3116 to 3122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CaF2, BaF2, and MgF2are low-index, infrared-transparent materials that are extensively used in optical systems. Despite their technological importance, a systematic investigation into the temperature dependence of their optical properties is lacking. In this study, spectroscopic ellipsometry was used to obtain the refractive index of monocrystalline CaF2, BaF2, and MgF2for wavelengths between 220 nm and 1700 nm, and for temperatures between 21 °C and 368 °C. The raw ellipsometric data was fit to a Sellmeier model with temperature-dependent oscillator terms to extract the real part of the refractive index of each material. The refractive index of CaF2and BaF2was observed to decrease linearly with increasing temperature, which can be largely attributed to a reduction in the mass density due to thermal expansion. In contrast, the refractive index of MgF2was found to vary nonlinearly with temperature, which suggests competing effects from the material’s electronic polarizability. The temperature-dependent refractive index data reported here provide a finely-resolved mapping of the thermo-optic coefficient for these three materials, which could inform the development of optical devices operating at elevated or unsteady temperatures. 
    more » « less
  2. Abstract Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7(LZO) and La2Hf2O7(LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ions. Based on our earlier work, LHO‐based nanophosphors display higher photo‐ and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO‐based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+‐doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays. 
    more » « less
  3. null (Ed.)
    Two platinum precursors, Pt(CO) 2 Cl 2 and Pt(CO) 2 Br 2 , were designed for focused electron beam-induced deposition (FEBID) with the aim of producing platinum deposits of higher purity than those deposited from commercially available precursors. In this work, we present the first deposition experiments in a scanning electron microscope (SEM), wherein series of pillars were successfully grown from both precursors. The growth of the pillars was studied as a function of the electron dose and compared to deposits grown from the commercially available precursor MeCpPtMe 3 . The composition of the deposits was determined using energy-dispersive X-ray spectroscopy (EDX) and compared to the composition of deposits from MeCpPtMe 3 , as well as deposits made in an ultrahigh-vacuum (UHV) environment. A slight increase in metal content and a higher growth rate are achieved in the SEM for deposits from Pt(CO) 2 Cl 2 compared to MeCpPtMe 3 . However, deposits made from Pt(CO) 2 Br 2 show slightly less metal content and a lower growth rate compared to MeCpPtMe 3 . With both Pt(CO) 2 Cl 2 and Pt(CO) 2 Br 2 , a marked difference in composition was found between deposits made in the SEM and deposits made in UHV. In addition to Pt, the UHV deposits contained halogen species and little or no carbon, while the SEM deposits contained only small amounts of halogen species but high carbon content. Results from this study highlight the effect that deposition conditions can have on the composition of deposits created by FEBID. 
    more » « less