skip to main content


Title: Conformation of the Ester Group Governs the Photophysics of Highly Polarized Benzo[ g ]coumarins
Award ID(s):
2154609 1800602
NSF-PAR ID:
10425887
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
JACS Au
Volume:
3
Issue:
7
ISSN:
2691-3704
Page Range / eLocation ID:
p. 1918-1930
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.

    We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.

    Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.

    Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD.

     
    more » « less