Context.We report here on new results of the systematic monitoring of southern glitching pulsars at the Argentine Institute of Radioastronomy. In particular, we study in this work the new major glitch in the Vela pulsar (PSR J0835−4510) that occurred on 2024 April 29. Aims.We aim to thoroughly characterise the rotational behaviour of the Vela pulsar around its last major glitch and investigate the statistical properties of its individual pulses around the glitch. Methods.We characterise the rotational behaviour of the pulsar around the glitch through the pulsar timing technique. We measured the glitch parameters by fitting timing residuals to the data collected during the days surrounding the event. In addition, we study Vela individual pulses during the days of observation just before and after the glitch. We selected nine days of observations around the major glitch on 2024 April 29 and studied their statistical properties with the Self-Organizing Maps (SOM) technique. We used Variational AutoEncoder (VAE) reconstruction of the individual pulses to separate them clearly from the noise. Results.We obtain a precise timing solution for the glitch. We find two recovery terms of ∼3 days and ∼17 days. We find a correlation of high amplitude with narrower pulses while not finding notable qualitative systematic changes before and after the glitch.
more »
« less
First results of the glitching pulsar monitoring programme at the Argentine Institute of Radioastronomy
ABSTRACT We report here on the first results of a systematic monitoring of southern glitching pulsars at the Argentine Institute of Radioastronomy that started in the year 2019. We detected a major glitch in the Vela pulsar (PSR J0835 − 4510) and two small glitches in PSR J1048 − 5832. For each glitch, we present the measurement of glitch parameters by fitting timing residuals. We then make an individual pulse study of Vela in observations before and after the glitch. We selected 6 days of observations around the major glitch on 2021 July 22 and study their statistical properties with machine learning techniques. We use variational autoencoder (VAE) reconstruction of the pulses to separate them clearly from the noise. We perform a study with self-organizing map (SOM) clustering techniques to search for unusual behaviour of the clusters during the days around the glitch not finding notable qualitative changes. We have also detected and confirmed recent glitches in PSR J0742 − 2822 and PSR J1740 − 3015.
more »
« less
- Award ID(s):
- 2207920
- PAR ID:
- 10426108
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 521
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4504 to 4521
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we investigate the impact of transient noise artifacts, or glitches, on gravitational- wave inference from ground-based interferometer data, and test how modeling and subtracting these glitches affects the inferred parameters. Due to their time-frequency morphology, broadband glitches cause moderate to significant biasing of posterior distributions away from true values. In contrast, narrowband glitches induce negligible biasing effects, due to distinct signal and glitch morphologies. We inject simulated binary black hole signals into data containing three occurring glitch types from past LIGO-Virgo observing runs, and reconstruct both signal and glitch waveforms using BayesWave, a wavelet-based Bayesian analysis. We apply the standard LIGO-Virgo-KAGRA deglitching pro- cedure to the detector data, which consists of subtracting from calibrated LIGO data the glitch waveform estimated by the joint BayesWave inference. We produce posterior distributions on the parameters of the injected signal before and after subtracting the glitch, and we show that removing the transient noise effectively mitigates bias from broadband glitches. This study provides a baseline validation of existing techniques, while demonstrating waveform reconstruction improvements to the Bayesian algorithm for robust astrophysical characterization in glitch-prone detector data.more » « less
-
ABSTRACT The global network of interferometric gravitational wave (GW) observatories (LIGO, Virgo, KAGRA) has detected and characterized nearly 100 mergers of binary compact objects. However, many more real GWs are lurking sub-threshold, which need to be sifted from terrestrial-origin noise triggers (known as glitches). Because glitches are not due to astrophysical phenomena, inference on the glitch under the assumption it has an astrophysical source (e.g. binary black hole coalescence) results in source parameters that are inconsistent with what is known about the astrophysical population. In this work, we show how one can extract unbiased population constraints from a catalogue of both real GW events and glitch contaminants by performing Bayesian inference on their source populations simultaneously. In this paper, we assume glitches come from a specific class with a well-characterized effective population (blip glitches). We also calculate posteriors on the probability of each event in the catalogue belonging to the astrophysical or glitch class, and obtain posteriors on the number of astrophysical events in the catalogue, finding it to be consistent with the actual number of events included.more » « less
-
Context.The radio pulsar PSR J0742−2822 is known to exhibit rapid changes between different pulse profile states that correlate with changes in its spin-down rate. However, the connection between these variations and the glitch activity of the pulsar remains unclear. Aims.We aim to study the evolution of the pulse profile and spin-down rate of PSR J0742−2822 in the period MJD 58810–60149 (November 2019 to July 2023), which includes the glitch on MJD 59839 (September 2022). In particular, we looked for pulse profile or spin-down changes associated with the 2022 glitch. Methods.We observed PSR J0742−2822 with a high cadence from the Argentine Institute of Radioastronomy (IAR) between November 2019 and July 2023. We used standard timing tools to characterise the times of arrival of the pulses and to study the pulsar rotation and, particularly, the oscillations ofν̇. We also studied the evolution of the pulse profile. For both of them, we compared their behaviour before and after the 2022 glitch. Results.With respect toν̇, we find that oscillations diminished in amplitude after the glitch. We find four different components contributing to the pre-glitchν̇oscillations, and only one component after the glitch. With regard to the emission, we find the pulse profile has two main peaks. We detect an increase in theW50of the total pulse profile of ∼12% after the glitch and we find the amplitude of the trailing peak increased with respect to the amplitude of the leading one after the glitch. Conclusions.We find significant changes in the pulse profile and the spin-down rate of PSR J0742−2822 after its 2022 glitch. These results suggest that there is a strong coupling between the internal superfluid of the neutron star and its magnetosphere, and that pulse profile changes may be led by this coupling instead of being led purely by magnetospheric effects.more » « less
-
Context. The Argentine Institute of Radio astronomy (IAR) is equipped with two single-dish 30 m radio antennas capable of performing daily observations of pulsars and radio transients in the southern hemisphere at 1.4 GHz. Aims. We aim to introduce to the international community the upgrades performed and to show that the IAR observatory has become suitable for investigations in numerous areas of pulsar radio astronomy, such as pulsar timing arrays, targeted searches of continuous gravitational waves sources, monitoring of magnetars and glitching pulsars, and studies of a short time scale interstellar scintillation. Methods. We refurbished the two antennas at IAR to achieve high-quality timing observations. We gathered more than 1000 h of observations with both antennas in order to study the timing precision and sensitivity they can achieve. Results. We introduce the new developments for both radio telescopes at IAR. We present daily observations of the millisecond pulsar J0437−4715 with timing precision better than 1 μ s. We also present a follow-up of the reactivation of the magnetar XTE J1810–197 and the measurement and monitoring of the latest (Feb. 1, 2019) glitch of the Vela pulsar (J0835–4510). Conclusions. We show that IAR is capable of performing pulsar monitoring in the 1.4 GHz radio band for long periods of time with a daily cadence. This opens up the possibility of pursuing several goals in pulsar science, including coordinated multi-wavelength observations with other observatories. In particular, daily observations of the millisecond pulsar J0437−4715 would increase the sensitivity of pulsar timing arrays. We also show IAR’s great potential for studying targets of opportunity and transient phenomena, such as magnetars, glitches, and fast-radio-burst sources.more » « less
An official website of the United States government

