skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation
As the world’s population is increasing exponentially, human diets have changed to less healthy foods resulting in detrimental health complications. Increasing vegetable intake by both rural and urban dwellers can help address this issue. However, these communities often face the challenge of limited vegetable supply and accessibility. More so, open field vegetable production cannot supply all the vegetable needs because biotic and abiotic stress factors often hinder production. Alternative approaches such as vegetable production in greenhouses, indoor farms, high tunnels, and screenhouses can help fill the gap in the supply chain. These alternative production methods provide opportunities to use less resources such as land space, pesticide, and water. They also make possible the control of production factors such as temperature, relative humidity, and carbon dioxide, as well as extension of the growing season. Some of these production systems also make the supply and distribution of nutrients to crops easier and more uniform to enhance crop growth and yield. This paper reviews these alternative vegetable production approaches which include hydroponics, aeroponics, aquaponics and soilless mixes to reveal the need for exploring them further to increase crop production. The paper also discusses facilities used, plant growth factors, current challenges including energy costs and prospects.  more » « less
Award ID(s):
1914692
PAR ID:
10426175
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Plants
Volume:
11
Issue:
21
ISSN:
2223-7747
Page Range / eLocation ID:
2843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shape is a primary determinant of consumer preference for many horticultural crops and it is also associated with many aspects of marketing, harvest mechanics, and postharvest handling. Perceptions of quality and preference often map to specific shapes of fruits, tubers, leaves, flowers, roots, and other plant organs. As a result, humans have greatly expanded the palette of shapes available for horticultural crops, in many cases creating a series of market classes where particular shapes predominate. Crop wild relatives possess organs shaped by natural selection, while domesticated species possess organs shaped by human desires. Selection for visually-pleasing shapes in vegetable crops resulted from a number of opportunistic factors, including modification of supernumerary cambia, allelic variation at loci that control fundamental processes such as cell division, cell elongation, transposon-mediated variation, and partitioning of photosynthate. Genes that control cell division patterning may be universal shape regulators in horticultural crops, influencing the form of fruits, tubers, and grains in disparate species. Crop wild relatives are often considered less relevant for modern breeding efforts when it comes to characteristics such as shape, however this view may be unnecessarily limiting. Useful allelic variation in wild species may not have been examined or exploited with respect to shape modifications, and newly emergent information on key genes and proteins may provide additional opportunities to regulate the form and contour of vegetable crops. 
    more » « less
  2. As blue water resources become increasingly scarce with more frequent droughts and overuse, irrigated agriculture faces significant challenges to reduce its water footprint while maintaining high levels of crop production. Building soil health has been touted as an important means of enhancing the resilience of agroecosystems to drought, mainly with a focus in rainfed systems reliant on green water through increases in infiltration and soil water storage. Yet, green water often contributes only a small fraction of the total crop water budget in irrigated agricultural regions. To scope the potential for how soil health management could impact water resources in irrigated systems, we review how soil health affects soil water flows, plant–soil–microbe interactions, and plant water capture and productive use. We assess how these effects could interact with irrigation management to help make green and blue water use more sustainable. We show how soil health management could (1) optimize green water availability (e.g., by increasing infiltration and soil water storage), (2) maximize productive water flows (e.g., by reducing evaporation and supporting crop growth), and (3) reduce blue water withdrawals (e.g., by minimizing the impacts of water stress on crop productivity). Quantifying the potential of soil health to improve water resource management will require research that focuses on outcomes for green and blue water provisioning and crop production under different irrigation and crop management strategies. Such information could be used to improve and parameterize finer scale crop, soil, and hydraulic models, which in turn must be linked with larger scale hydrologic models to address critical water-resources management questions at watershed or regional scales. While integrated soil health-water management strategies have considerable potential to conserve water—especially compared to irrigation technologies that enhance field-level water use efficiency but often increase regional water use—transitions to these strategies will depend on more than technical understanding and must include addressing interrelated structural and institutional barriers. By scoping a range of ways enhancing soil health could improve resilience to water limitations and identifying key research directions, we inform research and policy priorities aimed at adapting irrigated agriculture to an increasingly challenging future. 
    more » « less
  3. Abstract Most farmland in the US Corn Belt is used to grow row crops at large scales (e.g., corn, soybean) that are highly processed before entering the human food stream rather than specialty crops grown in smaller areas and meant for direct human consumption (table food). Bolstering local table food production close to urban populations in this region through peri-urban agriculture (PUA) could enhance sustainability and resilience. Understanding factors influencing PUA producers' preferences and willingness to produce table food would enable supportive planning and policy efforts. This study combined land use visualization and survey data to examine the potential for increased local table food production for the US Corn Belt. We developed a spatial visualization of current agricultural land use and a future scenario with increased table food production designed to meet 50% of dietary requirements for a metropolitan population in 2050. A survey was administered to row crop (1360) and specialty crop (55) producers near Des Moines, Iowa, US to understand current and intended agricultural land use and factors influencing production. Responses from 316 row crop and 25 specialty crop producers were eligible for this analysis. A future scenario with increased table food production would require less than 3% of available agricultural land and some additional producers (approximately 130, primarily for grain production). Survey responses indicated PUA producers planned small increases in table food production in the next three to five years. Producer plans, including land rental for table food production, could provide approximately 25% of residents' fruit, vegetables, and grains, an increase from the baseline of 2%. Row crop producers ranked food safety regulations, and specialty producers ranked labor concerns as strong influences on their decision-making. Both groups indicated that crop insurance and processing facilities were also important. Increasing table food production by clustering mid-scale operations to increase economies of scale and strengthening supply chains and production infrastructure could provide new profitable opportunities for farmers and more resilient food systems for growing urban regions in the US Corn Belt. Continuing to address producer factors and landscape-scale environmental impacts will be critical in considering food system sustainability challenges holistically. 
    more » « less
  4. Communities are considering local food production in response to the pressing need to reduce food system greenhouse gas (GHG) emissions. However, local food systems can vary considerably in design and operation, including controlled environment agriculture (CEA), which refers to agricultural production that takes place within an enclosed space where environmental conditions, such as temperature, humidity, and light, are precisely controlled. Such systems require a considerable amount of energy and thus emissions; therefore, this study seeks to quantify these environmental impacts to determine how local CEA systems compare to alternative systems. For this study’s methods, we apply life cycle assessment methodology to quantify the cradle-to-storeshelf GHG emissions and water consumption of four lettuce production systems: local indoor plant factory, local greenhouse, local seasonal soil, and conventional centralized production in California with transportation. Using geographically specific inputs, the study estimates the environmental impact of the different production systems including geospatially resolved growth modeling, emissions intensity, and transportation distances. The results include the major finding that baseline CEA systems always have higher GHG emissions (2.6–7.7 kg CO2e kg−1) than centralized production (0.3–1.0 kg CO2e kg−1), though water consumption is significantly less owing to hydroponic efficiency. In contrast, local seasonal soil production generally has a lower GHG impact than centralized production, though water consumption varies by crop yield and local precipitation during growing seasons. Scenario analyses indicate CEA facilities would need to electrify all systems and utilize low-carbon electricity sources to have equivalent or lower GHG impacts than California centralized production plus transportation. We conclude that these results can inform consumers and policy makers that local seasonal production and conventional supply chains are more sustainable than local CEA production in near-term food-energy-water sustainability nexus decision making. 
    more » « less
  5. Abstract China increasingly relies on agricultural imports, driven by its rising population and income, as well as dietary shifts. International trade offers an opportunity to relieve pressures on resource depletion and pollution, such as nitrogen (N) pollution, while it poses multiple socioeconomic challenges, such as food availability. To quantify such trade-offs considering the roles of different crop types, we developed a unique crop-specific N budget database and assessed the impacts of the crop trade on multiple sustainability concerns including N pollution caused by crop production, crop land area, independence of food supply, and trade expenditures. We quantified the ‘virtual’ N inputs and harvested areas, which are the amount of N inputs and land resources used in exporting countries for China’s crop import. In addition, we proposed the concepts of ‘alternative’ N inputs and harvested area to quantify the resources needed if imported crops were produced in China. By comparing results from ‘alternative’ and ‘virtual’ concepts, we assessed the role of trade in Chinese crops over the past 30 years (i.e. 1986–2015) in alleviating N pollution and saving cropland in China and the world. Crop imports accounted for 31% of Chinese crop N consumption in 2015, and these crop imports eased the need for an additional cropland area of 62 million ha. It also avoided an N surplus by 56 and 36 Tg (Tg = 109kg) for China and the world respectively but led to $621 billion crop trade expenditures over the 30 year period. The N pollution damage avoided by crop imports in economic terms was priced at $22 ± 16 billion in 2015, which is lower than the crop trade expenditures but may be surpassed in the future with the development of the Chinese economy. Optimizing a crop trade portfolio can shift domestic production from N-intensive crop production (e.g. maize, fruits, and vegetables) to N-efficient crop production (e.g. soybeans), and consequently mitigate an N surplus by up to 12%. Improving N use efficiency for individual crops can further increase the mitigation potential of N surplus to 30%–50%, but requires technology advancement and policy incentives. 
    more » « less