skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Multiple Sources in Automatic African American English Dialect Detection for Adults and Children
This paper 1 presents a novel system which utilizes acoustic, phonological, morphosyntactic, and prosodic information for binary automatic dialect detection of African American English. We train this system utilizing adult speech data and then evaluate on both children’s and adults’ speech with unmatched training and testing scenarios. The proposed system combines novel and state-of-the-art architectures, including a multi-source transformer language model pre-trained on Twitter text data and fine-tuned on ASR transcripts as well as an LSTM acoustic model trained on self-supervised learning representations, in order to learn a comprehensive view of dialect. We show robust, explainable performance across recording conditions for different features for adult speech, but fusing multiple features is important for good results on children’s speech.  more » « less
Award ID(s):
2202585
PAR ID:
10426181
Author(s) / Creator(s):
; ; ;
Editor(s):
IEEE SIGNAL PROCESSING SOCIETY
Date Published:
Journal Name:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
1-5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper evaluates an innovative framework for spoken dialect density prediction on children's and adults' African American English. A speaker's dialect density is defined as the frequency with which dialect-specific language characteristics occur in their speech. Rather than treating the presence or absence of a target dialect in a user's speech as a binary decision, instead, a classifier is trained to predict the level of dialect density to provide a higher degree of specificity in downstream tasks. For this, self-supervised learning representations from HuBERT, handcrafted grammar-based features extracted from ASR transcripts, prosodic features, and other feature sets are experimented with as the input to an XGBoost classifier. Then, the classifier is trained to assign dialect density labels to short recorded utterances. High dialect density level classification accuracy is achieved for child and adult speech and demonstrated robust performance across age and regional varieties of dialect. Additionally, this work is used as a basis for analyzing which acoustic and grammatical cues affect machine perception of dialect. 
    more » « less
  2. This paper proposes a novel linear prediction coding-based data augmentation method for children’s low and zero resource dialect ASR. The data augmentation procedure consists of perturbing the formant peaks of the LPC spectrum during LPC analysis and reconstruction. The method is evaluated on two novel children’s speech datasets with one containing California English from the Southern California Area and the other containing a mix of Southern American English and African American English from the Atlanta, Georgia area. We test the proposed method in training both an HMM-DNN system and an end-to-end system to show model-robustness and demonstrate that the algorithm improves ASR performance, especially for zero resource dialect children’s task, as compared to common data augmentation methods such as VTLP, Speed Perturbation, and SpecAugment. 
    more » « less
  3. ISCA (Ed.)
    In this paper, we explore automatic prediction of dialect density of the African American English (AAE) dialect, where dialect density is defined as the percentage of words in an utterance that contain characteristics of the non-standard dialect. We investigate several acoustic and language modeling features, including the commonly used X-vector representation and ComParE feature set, in addition to information extracted from ASR transcripts of the audio files and prosodic information. To address issues of limited labeled data, we use a weakly supervised model to project prosodic and X-vector features into low-dimensional task-relevant representations. An XGBoost model is then used to predict the speaker's dialect density from these features and show which are most significant during inference. We evaluate the utility of these features both alone and in combination for the given task. This work, which does not rely on hand-labeled transcripts, is performed on audio segments from the CORAAL database. We show a significant correlation between our predicted and ground truth dialect density measures for AAE speech in this database and propose this work as a tool for explaining and mitigating bias in speech technology. 
    more » « less
  4. The ability to assess children’s conversational interaction is critical in determining language and cognitive proficiency for typically developing and at-risk children. The earlier at-risk child is identified, the earlier support can be provided to reduce the social impact of the speech disorder. To date, limited research has been performed for young child speech recognition in classroom settings. This study addresses speech recognition research with naturalistic children’s speech, where age varies from 2.5 to 5 years. Data augmentation is relatively under explored for child speech. Therefore, we investigate the effectiveness of data augmentation techniques to improve both language and acoustic models. We explore alternate text augmentation approaches using adult data, Web data, and via text generated by recurrent neural networks. We also compare several acoustic augmentation techniques: speed perturbation, tempo perturbation, and adult data. Finally, we comment on child word count rates to assess child speech development. 
    more » « less
  5. Online data collection allows for access to diverse populations. In the current study, we used online recruitment and data collection methods to obtain a corpus of read speech from adult talkers representing three authentic regional dialects of American English and one novel dialect created for the corpus. The authentic dialects (New England, Northern, and Southern American English) are each represented by 8–10 talkers, ranging in age from 22 to 75 years old. The novel dialect was produced by five Spanish-English bilinguals with training in linguistics, who were asked to produce Spanish /o/ in an otherwise English segmental context. One vowel contrast was selected for each dialect, in which the vowels within the contrast are acoustically more similar in the target dialect than in the other dialects. Each talker produced one familiar short story with 40 tokens of each vowel within the target contrast for their dialect, as well as a set of real words and nonwords that represent both the target vowel contrast for their dialect and the other three vowel contrasts for comparison across dialects. Preliminary acoustic analysis reveals both cross-dialect and within-dialect variability in the target vowel contrasts. The corpus materials are available to the scholarly community. 
    more » « less