skip to main content

Title: Post-fire seed dispersal of a wind-dispersed shrub declined with distance to seed source, yet had high levels of unexplained variation
Abstract Plant-population recovery across large disturbance areas is often seed-limited. An understanding of seed dispersal patterns is fundamental for determining natural-regeneration potential. However, forecasting seed dispersal rates across heterogeneous landscapes remains a challenge. Our objectives were to determine (i) the landscape patterning of post-disturbance seed dispersal, and underlying sources of variation and the scale at which they operate, and (ii) how the natural seed dispersal patterns relate to a seed augmentation strategy. Vertical seed trapping experiments were replicated across 2 years and five burned and/or managed landscapes in sagebrush steppe. Multi-scale sampling and hierarchical Bayesian models were used to determine the scale of spatial variation in seed dispersal. We then integrated an empirical and mechanistic dispersal kernel for wind-dispersed species to project rates of seed dispersal and compared natural seed arrival to typical post-fire aerial seeding rates. Seeds were captured across the range of tested dispersal distances, up to a maximum distance of 26 m from seed-source plants, although dispersal to the furthest traps was variable. Seed dispersal was better explained by transect heterogeneity than by patch or site heterogeneity (transects were nested within patch within site). The number of seeds captured varied from a modelled mean of ~13 m−2 adjacent to patches of seed-producing plants, to nearly none at 10 m from patches, standardized over a 49-day period. Maximum seed dispersal distances on average were estimated to be 16 m according to a novel modelling approach using a ‘latent’ variable for dispersal distance based on seed trapping heights. Surprisingly, statistical representation of wind did not improve model fit and seed rain was not related to the large variation in total available seed of adjacent patches. The models predicted severe seed limitations were likely on typical burned areas, especially compared to the mean 95–250 seeds per m2 that previous literature suggested were required to generate sagebrush recovery. More broadly, our Bayesian data fusion approach could be applied to other cases that require quantitative estimates of long-distance seed dispersal across heterogeneous landscapes.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Auge, Gabriela
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Seed bank, seed dispersal and historical disturbance are critical factors affecting plant population persistence. However, because of difficulties collecting data on these factors they are often ignored.

    We evaluated the roles of seed bank, seed dispersal and historical disturbance on metapopulation persistence ofHypericum cumulicola, a Florida endemic. We took advantage of long‐term demographic data of multiple populations (22 years; ~11 K individuals; 15 populations) and a wealth of information on burn history (1962–present), and habitat attributes (patch specific location, elevation, area and aggregation) of a system of 92 patches of Florida rosemary scrub. We used previously developed integral projection models to assess the relative ability of simulations with different levels of seed dormancy for recently produced and older seeds and different dispersal kernels (including no dispersal) to predict regional observed occupancy and plant abundance in patches in 2016–2018. We compared a simulation with this model using historical burn history to 500 model simulations with the same average fire regime (using a Weibull distribution to determine the probability of ignition) but with random ignition years.

    The most likely model had limited dispersal (mean = 0.5 m) and the highest dormancy (field estimates × 1.2 %) and its predictions were associated with observed occurrences (67% correct) and densities (20% of variance explained). Historical burn synchrony among neighbouring patches (skewness in the number of patches burned by year = 1.79) probably explains the higher densities predicted by the simulation with the historical fire regime compared with predicted abundances after simulations using random ignition years (skewness = 0.20 +SE= 0.01).

    Synthesis.Our findings demonstrate the pivotal role of seed dormancy, dispersal and fire history on population dynamics, distribution and abundance. Because of the prevalence of metapopulation dynamics, we should be aware of the significance of changes in the availability and configuration of suitable habitat associated with human or non‐human landscape changes. Decisions on prescribed fires (or other disturbances) will benefit from our knowledge of consequences of fire frequency, but also of location of ignition and the probability of fire spread.

    more » « less
  2. Premise

    Seed dispersal allows plants to colonize new sites and contributes to gene flow among populations. Despite its fundamental importance to ecological and evolutionary processes, our understanding of seed dispersal is limited due to the difficulty of directly observing dispersal events. This is particularly true for the majority of plant species that are considered to have gravity as their primary dispersal mechanism. The potential for long‐distance movement of gravity‐dispersed seeds by secondary dispersal vectors is rarely evaluated.


    We employ whole‐genome assays of maternally inherited cpDNAinPlagiobothrys nothofulvusto resolve patterns of genetic variation due to effective (realized) seed dispersal within a 16 hectare prairie that is characterized by a mosaic of habitat types. We evaluate the effects of microgeographic landscape features extracted from micro‐UAVaerial surveys on patterns of seed dispersal using landscape genetics methods.


    We found evidence of high resistance to seed‐mediated gene flow (effective dispersal) within patches ofPlagiobothrys nothofulvus, and strong genetic structure over distances of less than 20 m. Geographic distance was a poor predictor of dispersal distance, while landscape features had stronger influences on patterns of dispersal (distance and direction of seed movement). Patterns of dispersal were best predicted by the combined distribution of flower patches, habitat type, and the network of vole runways, with the latter explaining the largest proportion of variation in the model.


    Our results suggest that primary dispersal occurs mostly within microhabitats and infrequent secondary dispersal may occur over longer distances due to the activity of small mammals and other vertebrates.

    more » « less
  3. Abstract Aim

    Wildfire is an essential disturbance agent that creates burn mosaics, or a patchwork of burned and unburned areas across the landscape. Unburned patches, fire refugia, serve as carbon sinks and seed sources for forest regeneration in burned areas. In the Cajander larch (Larix cajanderiMayr.) forests of north‐eastern Siberia, an unprecedented wildfire season in 2020 and little documentation of landscape patch dynamics have resulted in research gaps about the characteristics of fire refugia in northern latitude forests, which are warming faster than other global forest ecosystems. We aim to characterize the 2010 distribution of fire refugia for these forest ecosystems and evaluate their topographic drivers.


    North‐eastern Siberia across the North‐east Siberian Taiga and the Cherskii‐Kolyma Mountain Tundra ecozones.

    Time period


    Major taxa studied

    Cajander larch.


    We used Landsat imagery to define burned and unburned patches, and the Arctic digital elevation model to calculate topographic variables. We characterized the size and density of fire refugia. We sampled individual pixels (n = 80,000) from an image stack that included a binary burned/unburned, elevation, slope, aspect, topographic position index, ruggedness, and tree cover from 2001 to 2020. We evaluated the topographic drivers of fire refugia with boosted regression trees.


    We found no substantial difference in fire refugia size and density across the region. The fire refugia size averaged 7.2 ha (0.09–150,439 ha). The majority of interior burned patches exceed the potential wind dispersal distance from fire refugia. Topographic position index and terrain steepness were important predictors of fire refugia.

    Main conclusions

    Unprecedented wildfires in 2020 did not impact fire refugia formation. Fire refugia are strongly controlled by topographic positions such as uplands and lowlands that influence microsite hydrological conditions. Fire refugia contribute to postfire landscape heterogeneity that preserves ecosystem functions, seed sources, habitat, and carbon sinks.

    more » « less
  4. Abstract

    Habitat fragmentation resulting in habitat loss and increased isolation is a dominant driver of global species declines. Habitat isolation and connectivity vary across scales, and understanding how connectivity affects biodiversity can be challenging because the relevant scale depends on the taxa involved. A multiscale analysis can provide insight in biodiversity patterns across spatial scale when information on dispersal ability is not available, in particular for community‐level studies focusing on multiple taxa. In this study, we examine the relationship between arthropod diversity, patch area, and connectivity using a multiscale approach. We make use of a natural experiment on Hawai‘i Island, where historic volcanic activity has transformed contiguous native forests to lava matrix and discrete forest patches. This landscape of patches has persisted for 150 yr, and we selected 10,000 ha consisting of 863 patches to analyze landscape connectivity using a graph theory approach. We collected arthropod samples fromMetrosideros polymorpha tree canopies in 34 forest patches during multiple years. We analyzed the relationship of arthropod diversity with area, as well as with connectivity across increasing scales, or dispersal threshold distances. In contrast to well‐established ecological theory as well as prior work on birds and fungi in this system, we did not find support for a canonical species–area relationship. Next, we calculated connectivity across spatial scales and found lower Shannon diversity with higher connectivity at small scales, but no effect at increased dispersal threshold distances. We examined the landscape structure and found all habitat patches connected into three subnetworks at a 350 m threshold distance. All patches were connected at 700 m threshold distance, indicating structural dispersal limitation only at small scales. Our findings suggest that canopy arthropods are not dispersal limited at scales shown to impact both soil fungi and birds in this system. Instead, Hawaiian canopy arthropods may perceive the landscape as a connected area where discrete forest patches and the early‐successional matrix contribute resources that vary spatially with regard to habitat quality. We argue for the utility of multiscale approaches, and the importance of examining maintenance of biodiversity in fragmented landscapes that persist for hundreds of years.

    more » « less
  5. Abstract

    The forests of southeastern Amazonia are highly threatened by disturbances such as fragmentation, understory fires, and extreme climatic events. Large‐bodied frugivores such as the lowland tapir (Tapirus terrestris) have the potential to offset this process, supporting natural forest regeneration by dispersing a variety of seeds over long distances to disturbed forests. However, we know little about their effectiveness as seed dispersers in degraded forest landscapes. Here, we investigate the seed dispersal function of lowland tapirs in Amazonian forests subject to a range of human (fire and fragmentation) and natural (extreme droughts and windstorms) disturbances, using a combination of field observations, camera traps, and light detection and ranging (LiDAR) data. Tapirs travel and defecate more often in degraded forests, dispersing much more seeds in these areas [9,822 seeds per ha/year (CI95% = 9,106; 11,838)] than in undisturbed forests [2,950 seeds per ha/year (CI95% = 2,961; 3,771)]. By effectively dispersing seeds across disturbed forests, tapirs may contribute to natural forest regeneration—the cheapest and usually the most feasible way to achieve large‐scale restoration of tropical forests. Through the dispersal of large‐seeded species that eventually become large trees, such frugivores also contribute indirectly to maintaining forest carbon stocks. These functions may be critical in helping tropical countries to achieve their goals to maintain and restore biodiversity and its ecosystem services. Ultimately, preserving these animals along with their habitats may help in the process of natural recovery of degraded forests throughout the tropics.

    Abstract in Portuguese is available with online material.

    more » « less