skip to main content


This content will become publicly available on June 27, 2024

Title: Prolonged thermocline warming by near-inertial internal waves in the wakes of tropical cyclones
Turbulence-enhanced mixing of upper ocean heat allows interaction between the tropical atmosphere and cold water masses that impact climate at higher latitudes thereby regulating air–sea coupling and poleward heat transport. Tropical cyclones (TCs) can drastically enhance upper ocean mixing and generate powerful near-inertial internal waves (NIWs) that propagate down into the deep ocean. Globally, downward mixing of heat during TC passage causes warming in the seasonal thermocline and pumps 0.15 to 0.6 PW of heat into the unventilated ocean. The final distribution of excess heat contributed by TCs is needed to understand subsequent consequences for climate; however, it is not well constrained by current observations. Notably, whether or not excess heat supplied by TCs penetrates deep enough to be kept in the ocean beyond the winter season is a matter of debate. Here, we show that NIWs generated by TCs drive thermocline mixing weeks after TC passage and thus greatly deepen the extent of downward heat transfer induced by TCs. Microstructure measurements of the turbulent diffusivity ( κ ) and turbulent heat flux ( J q ) in the Western Pacific before and after the passage of three TCs indicate that mean thermocline values of κ and J q increased by factors of 2 to 7 and 2 to 4 (95% confidence level), respectively, after TC passage. Excess mixing is shown to be associated with the vertical shear of NIWs, demonstrating that studies of TC–climate interactions ought to represent NIWs and their mixing to accurately capture TC effects on background ocean stratification and climate.  more » « less
Award ID(s):
2105654
NSF-PAR ID:
10426247
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
26
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microstructure observations in the Pacific cold tongue reveal that turbulence often penetrates into the thermocline, producing hundreds of watts per square meter of downward heat transport during nighttime and early morning. However, virtually all observations of this deep-cycle turbulence (DCT) are from 0°, 140°W. Here, a hierarchy of ocean process simulations, including submesoscale-permitting regional models and turbulence-permitting large-eddy simulations (LES) embedded in a regional model, provide insight into mixing and DCT at and beyond 0°, 140°W. A regional hindcast quantifies the spatiotemporal variability of subsurface turbulent heat fluxes throughout the cold tongue from 1999 to 2016. Mean subsurface turbulent fluxes are strongest (∼100 W m −2 ) within 2° of the equator, slightly (∼10 W m −2 ) stronger in the northern than Southern Hemisphere throughout the cold tongue, and correlated with surface heat fluxes ( r 2 = 0.7). The seasonal cycle of the subsurface heat flux, which does not covary with the surface heat flux, ranges from 150 W m −2 near the equator to 30 and 10 W m −2 at 4°N and 4°S, respectively. Aseasonal variability of the subsurface heat flux is logarithmically distributed, covaries spatially with the time-mean flux, and is highlighted in 34-day LES of boreal autumn at 0° and 3°N, 140°W. Intense DCT occurs frequently above the undercurrent at 0° and intermittently at 3°N. Daily mean heat fluxes scale with the bulk vertical shear and the wind stress, which together explain ∼90% of the daily variance across both LES. Observational validation of the scaling at 0°, 140°W is encouraging, but observations beyond 0°, 140°W are needed to facilitate refinement of mixing parameterization in ocean models. Significance Statement This work is a fundamental contribution to a broad community effort to improve global long-range weather and climate forecast models used for seasonal to longer-term prediction. Much of the predictability on seasonal time scales is derived from the slow evolution of the upper eastern equatorial Pacific Ocean as it varies between El Niño and La Niña conditions. This study presents state-of-the-art high-resolution regional numerical simulations of ocean turbulence and mixing in the eastern equatorial Pacific. The results inform future planning for field work as well as future efforts to refine the representation of ocean mixing in global forecast models. 
    more » « less
  2. null (Ed.)
    Abstract Sea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U 10 and air–sea temperature and moisture disequilibrium (Δ T and Δ q , respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U 10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven ( U 10 ) and thermodynamically driven (Δ T and Δ q ) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δ q is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δ q > 5 g kg −1 at moderate values of U 10 led to intense inner-core moisture fluxes of greater than 600 W m −2 during RI. Peak values in Δ q preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δ q is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes. 
    more » « less
  3. Abstract The Indo-Pacific Ocean appears exponentially stratified between 1- and 3-km depth with a decay scale on the order of 1 km. In his celebrated paper “Abyssal recipes,” W. Munk proposed a theoretical explanation of these observations by suggesting a pointwise buoyancy balance between the upwelling of cold water and the downward diffusion of heat. Assuming a constant upwelling velocity w and turbulent diffusivity κ , the model yields an exponential stratification whose decay scale is consistent with observations if κ ∼ 10 −4 m 2 s −1 . Over time, much effort has been made to reconcile Munk’s ideas with evidence of vertical variability in κ , but comparably little emphasis has been placed on the even stronger evidence that w decays toward the surface. In particular, the basin-averaged w nearly vanishes at 1-km depth in the Indo-Pacific. In light of this evidence, we consider a variable-coefficient, basin-averaged analog of Munk’s budget, which we verify against a hierarchy of numerical models ranging from an idealized basin-and-channel configuration to a coarse global ocean simulation. Study of the budget reveals that the decay of basin-averaged w requires a concurrent decay in basin-averaged κ to produce an exponential-like stratification. As such, the frequently cited value of 10 −4 m 2 s −1 is representative only of the bottom of the middepths, whereas κ must be much smaller above. The decay of mixing in the vertical is as important to the stratification as its magnitude . Significance Statement Using a combination of theory and numerical simulations, it is argued that the observed magnitude and shape of the global ocean stratification and overturning circulation appear to demand that turbulent mixing increases quasi-exponentially toward the ocean bottom. Climate models must therefore prescribe such a vertical profile of turbulent mixing in order to properly represent the heat and carbon uptake accomplished by the global overturning circulation on centennial and longer time scales. 
    more » « less
  4. Abstract. During katabatic wind events in the Terra Nova Bay and Ross Sea polynyas, wind speeds exceeded 20 m s−1, air temperatures were below −25 ℃, and the mixed layer extended as deep as 600 meters. Yet, upper ocean temperature and salinity profiles were not perfectly homogeneous, as would be expected with vigorous convective heat loss. Instead, the profiles revealed bulges of warm and salty water directly beneath the ocean surface and extending downwards tens of meters. Considering both the colder air above and colder water below, we suggest the increase in temperature and salinity reflects latent heat and salt release during unconsolidated frazil ice production within the upper water column. We use a simplified salt budget to analyze these anomalies to estimate in-situ frazil ice concentration between 332 × 10−3 and 24.4 × 10−3 kg m−3. Contemporaneous estimates of vertical mixing by turbulent kinetic energy dissipation reveal rapid convection in these unstable density profiles, and mixing lifetimes from 2 to 12 minutes. The corresponding median rate of ice production is 26 cm day−1 and compares well with previous empirical and model estimates. Our individual estimates of ice production up to 378 cm day−1 reveal the intensity of short-term ice production events during the windiest episodes of our occupation of Terra Nova Bay Polynya. How to cite: De Pace, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., and Loose, B.: Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-213, in review, 2019. 
    more » « less
  5. Abstract

    Mixing of the ocean beneath tropical cyclones (TC) cools the surface temperature thereby modifying the storm intensity. Modeling studies predict that surface wave forcing through Langmuir turbulence (LT) increases the mixing and cooling and decreases near‐surface vertical velocity shear. However, there are very few quantitative observational validations of these model predictions, and the validation efforts are often limited by uncertainties in the drag coefficient (Cd). We combine EM‐APEX and Lagrangian float measurements of temperature, salinity, velocity, and vertical turbulent kinetic energy (VKE) from five TCs with a coupled ocean‐wave model (Modular Ocean Model 6—WAVEWATCH III) forced by the drag coefficientCddirectly constrained for these storms. On the right‐hand of the storms in the northern hemisphere, where wind and waves are nearly aligned, the measured VKE is consistent with predictions of models including LT and 2–3 times higher than predictions without LT. Similarly, vertical shear in the upper 20 m is small, consistent with predictions of LT models and inconsistent with the large shears predicted by models without LT. On the left‐hand of the storms, where wind and waves are misaligned, the observed VKE and cooling are reduced compared to those on the right‐hand, consistent with the measured decrease inCd. These results confirm the importance of surface waves for ocean cooling and thus TC intensity, through bothCdand LT effects. However, the model predictions, even with the LT parameterization, underestimate the upper ocean cooling and mixed layer deepening by 20%–30%, suggesting possible deficiency of the existing LT parameterization.

     
    more » « less