skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prolonged thermocline warming by near-inertial internal waves in the wakes of tropical cyclones
Turbulence-enhanced mixing of upper ocean heat allows interaction between the tropical atmosphere and cold water masses that impact climate at higher latitudes thereby regulating air–sea coupling and poleward heat transport. Tropical cyclones (TCs) can drastically enhance upper ocean mixing and generate powerful near-inertial internal waves (NIWs) that propagate down into the deep ocean. Globally, downward mixing of heat during TC passage causes warming in the seasonal thermocline and pumps 0.15 to 0.6 PW of heat into the unventilated ocean. The final distribution of excess heat contributed by TCs is needed to understand subsequent consequences for climate; however, it is not well constrained by current observations. Notably, whether or not excess heat supplied by TCs penetrates deep enough to be kept in the ocean beyond the winter season is a matter of debate. Here, we show that NIWs generated by TCs drive thermocline mixing weeks after TC passage and thus greatly deepen the extent of downward heat transfer induced by TCs. Microstructure measurements of the turbulent diffusivity ( κ ) and turbulent heat flux ( J q ) in the Western Pacific before and after the passage of three TCs indicate that mean thermocline values of κ and J q increased by factors of 2 to 7 and 2 to 4 (95% confidence level), respectively, after TC passage. Excess mixing is shown to be associated with the vertical shear of NIWs, demonstrating that studies of TC–climate interactions ought to represent NIWs and their mixing to accurately capture TC effects on background ocean stratification and climate.  more » « less
Award ID(s):
2105654
PAR ID:
10426247
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
26
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Sea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U 10 and air–sea temperature and moisture disequilibrium (Δ T and Δ q , respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U 10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven ( U 10 ) and thermodynamically driven (Δ T and Δ q ) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δ q is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δ q > 5 g kg −1 at moderate values of U 10 led to intense inner-core moisture fluxes of greater than 600 W m −2 during RI. Peak values in Δ q preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δ q is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes. 
    more » « less
  2. Abstract In the tropical Pacific, weak ventilation and intense microbial respiration at depth give rise to a low dissolved oxygen (O2) environment that is thought to be ventilated primarily by the equatorial current system (ECS). The role of mesoscale eddies and vertical mixing as potential pathways of O2supply in this region, however, remains poorly known due to sparse observations and coarse model resolution. Using an eddy resolving simulation of ocean circulation and biogeochemistry, we assess the contribution of these processes to the O2budget balance and find that vertical mixing of O2, which is modulated by the surface wind speed and the vertical shear of the eddying currents, contributes substantially to the replenishment of O2in the upper equatorial Pacific thermocline, complementing the advective supply of O2by the ECS and meridional circulation at depth. These transport processes vary seasonally in conjunction with the wind: mixing of O2into the upper thermocline is strongest during boreal summer and fall when the vertical shear and eddy kinetic energy are intensified. The relationship between eddy activity and the downward mixing of O2arises from the modulation of equatorial turbulence by Tropical Instability Waves via their impacts on the vertical shear. This interaction of processes across scales sustains a local pathway of O2delivery into the equatorial Pacific interior and highlights the need for adequate observations and models of turbulent mixing and mesoscale processes for understanding and predicting the fate of the tropical Pacific O2content in a warmer and more stratified ocean. 
    more » « less
  3. Abstract The Indo-Pacific Ocean appears exponentially stratified between 1- and 3-km depth with a decay scale on the order of 1 km. In his celebrated paper “Abyssal recipes,” W. Munk proposed a theoretical explanation of these observations by suggesting a pointwise buoyancy balance between the upwelling of cold water and the downward diffusion of heat. Assuming a constant upwelling velocity w and turbulent diffusivity κ , the model yields an exponential stratification whose decay scale is consistent with observations if κ ∼ 10 −4 m 2 s −1 . Over time, much effort has been made to reconcile Munk’s ideas with evidence of vertical variability in κ , but comparably little emphasis has been placed on the even stronger evidence that w decays toward the surface. In particular, the basin-averaged w nearly vanishes at 1-km depth in the Indo-Pacific. In light of this evidence, we consider a variable-coefficient, basin-averaged analog of Munk’s budget, which we verify against a hierarchy of numerical models ranging from an idealized basin-and-channel configuration to a coarse global ocean simulation. Study of the budget reveals that the decay of basin-averaged w requires a concurrent decay in basin-averaged κ to produce an exponential-like stratification. As such, the frequently cited value of 10 −4 m 2 s −1 is representative only of the bottom of the middepths, whereas κ must be much smaller above. The decay of mixing in the vertical is as important to the stratification as its magnitude . Significance Statement Using a combination of theory and numerical simulations, it is argued that the observed magnitude and shape of the global ocean stratification and overturning circulation appear to demand that turbulent mixing increases quasi-exponentially toward the ocean bottom. Climate models must therefore prescribe such a vertical profile of turbulent mixing in order to properly represent the heat and carbon uptake accomplished by the global overturning circulation on centennial and longer time scales. 
    more » « less
  4. Abstract Microstructure observations in the Pacific cold tongue reveal that turbulence often penetrates into the thermocline, producing hundreds of watts per square meter of downward heat transport during nighttime and early morning. However, virtually all observations of this deep-cycle turbulence (DCT) are from 0°, 140°W. Here, a hierarchy of ocean process simulations, including submesoscale-permitting regional models and turbulence-permitting large-eddy simulations (LES) embedded in a regional model, provide insight into mixing and DCT at and beyond 0°, 140°W. A regional hindcast quantifies the spatiotemporal variability of subsurface turbulent heat fluxes throughout the cold tongue from 1999 to 2016. Mean subsurface turbulent fluxes are strongest (∼100 W m −2 ) within 2° of the equator, slightly (∼10 W m −2 ) stronger in the northern than Southern Hemisphere throughout the cold tongue, and correlated with surface heat fluxes ( r 2 = 0.7). The seasonal cycle of the subsurface heat flux, which does not covary with the surface heat flux, ranges from 150 W m −2 near the equator to 30 and 10 W m −2 at 4°N and 4°S, respectively. Aseasonal variability of the subsurface heat flux is logarithmically distributed, covaries spatially with the time-mean flux, and is highlighted in 34-day LES of boreal autumn at 0° and 3°N, 140°W. Intense DCT occurs frequently above the undercurrent at 0° and intermittently at 3°N. Daily mean heat fluxes scale with the bulk vertical shear and the wind stress, which together explain ∼90% of the daily variance across both LES. Observational validation of the scaling at 0°, 140°W is encouraging, but observations beyond 0°, 140°W are needed to facilitate refinement of mixing parameterization in ocean models. Significance Statement This work is a fundamental contribution to a broad community effort to improve global long-range weather and climate forecast models used for seasonal to longer-term prediction. Much of the predictability on seasonal time scales is derived from the slow evolution of the upper eastern equatorial Pacific Ocean as it varies between El Niño and La Niña conditions. This study presents state-of-the-art high-resolution regional numerical simulations of ocean turbulence and mixing in the eastern equatorial Pacific. The results inform future planning for field work as well as future efforts to refine the representation of ocean mixing in global forecast models. 
    more » « less
  5. Abstract In the inner core of a tropical cyclone, turbulence not only exists in the boundary layer (BL) but also can be generated above the BL by eyewall and rainband clouds. Thus, the treatment of vertical turbulent mixing must go beyond the conventional scope of the BL. The turbulence schemes formulated based on the turbulent kinetic energy (TKE) are attractive as they are applicable to both deep and shallow convection regimes in the TC inner core provided that the TKE production and dissipation can be appropriately determined. However, TKE schemes are not self-closed. They must be closed by an empirically prescribed vertical profile of mixing length. This motivates this study to investigate the sensitivity of the simulated TC intensification to the sloping curvature and asymptotic length scale of mixing length, the two parameters that determine the vertical distribution of a prescribed mixing length. To tackle the problem, both idealized and real-case TC simulations are performed. The results show that the simulated TC intensification is sensitive to the sloping curvature of mixing length but only exhibits marginal sensitivity to the asymptotic length scale. The underlying reasons for such sensitivities are explored analytically based on the Mellor and Yamada Level-2 turbulence model and the analyses of azimuthal-mean tangential wind budget. The results highlight the uncertainty and importance of mixing length in numerical prediction of TCs and suggest that future research should focus on searching for physical constraints on mixing length, particularly in the low to mid troposphere, using observations and large eddy simulations. 
    more » « less