skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elasticity of Hydrated Al-Bearing Stishovite and Post- Stishovite: Implications for Understanding Regional Seismic VS Anomalies Along Subducting Slabs in the Lower Mantle
Award ID(s):
2001339
PAR ID:
10426484
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of geophysical research Solid earth
Volume:
127
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The distribution and transportation of water in Earth’s interior depends on the stability of water-bearing phases. The transition zone in Earth’s mantle is generally accepted as an important potential water reservoir because its main constituents, wadsleyite and ringwoodite, can incorporate weight percent levels of H2O in their structures at mantle temperatures. The extent to which water can be transported beyond the transition zone deeper into the mantle depends on the water carrying capacity of minerals stable in subducted lithosphere. Stishovite is one of the major mineral components in subducting oceanic crust, yet the capacity of stishovite to incorporate water beyond at lower mantle conditions remains speculative. In this study, we combine in situ laser heating with synchrotron X-ray diffraction to show that the unit cell volume of stishovite synthesized under hydrous conditions is ∼2.3 to 5.0% greater than that of anhydrous stishovite at pressures of ∼27 to 58 GPa and temperatures of 1,240 to 1,835 K. Our results indicate that stishovite, even at temperatures along a mantle geotherm, can potentially incorporate weight percent levels of H2O in its crystal structure and has the potential to be a key phase for transporting and storing water in the lower mantle. 
    more » « less
  2. Abstract Dense polymorphs of silica have been demonstrated experimentally to incorporate from 1.5 wt% to as much as 11.6 wt% H2O as OH groups, with implications for the hydrogen budgets of Earth and other planets. This OH is thought to enter the SiO2structure via a charge‐balanced substitution in which silicon vacancies (VSi) are compensated by protonating four of the surrounding six oxygen atoms, often referred to as a hydrogarnet‐type defect. There are many possible configurations for this defect structure in dense silica, but the nature of these configurations and whether they can be distinguished experimentally is unknown. We present here density functional theory calculations that systematically assess the possible configurations of a hydrogarnet‐type defect in stishovite (rutile‐type SiO2), with direct comparisons to experimental vibrational spectroscopy data. We predict that stishovite synthesized at 450 K and 10 GPa quenched to room temperature is dominated by a single defect type with tetrahedral geometry. This leads to OH stretching modes (2,500–3,000 cm−1) and SiOH bending modes (∼1,400–1,450 cm−1) largely consistent with experimentally observed modes. One remaining issue is that our calculations produce results compatible with experimental data on H to D exchange, but do not explain why a considerable fraction of the 1,420 cm−1mode shifts by only 40 cm−1in deuterated samples. At elevated pressures and temperatures, we find that a second square planar defect configuration also becomes favorable, leading to modes that should allow differentiation from the tetrahedral configuration. 
    more » « less