skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experiments and COMSOL simulations: A comparative study of the heat flux plate method and the gradient method for soil heat flux measurements in barren sand
Award ID(s):
2037504
PAR ID:
10426505
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Agricultural and Forest Meteorology
Volume:
334
Issue:
C
ISSN:
0168-1923
Page Range / eLocation ID:
109436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil heat flux plates (SHFPs) are widely used to measure soil heat flux (Gs). Gs is often underestimated by SHFPs (Gp). Although calibration methods are used, they are not always effective. The objective of this study is to evaluate the effectiveness of a field calibration method applied to various SHFPs installed in a full canopy maize field. A 5‐day measurement period with wet and dry soil conditions was used for calibration, while 80‐day and 60‐day measurement periods were used for evaluation. Uncorrected SHFP measured values (Gp) underestimated the actual reference Gs determined by the gradient method (Gs_grad) by 42%–64%. Gp values in the evaluation period were corrected (Gp_corr) by dividing them by the ratio of Gp/Gs_grad determined over the calibration period. After the correction, the Gp_corr agreed well with the Gs_grad, with Gp_corr/Gs_grad of four of six SHFPs being 0.90–1.01, improving to 74%–98%. The field calibration performed approximately the same with the wet and dry calibration periods, whether the calibration and evaluation periods were consecutive in time or had relatively long time intervals, indicating that this method accounted for almost all errors with SHFP. This is largely due to the slight variation in soil thermal conductivity and the linearity between soil temperature gradients from SHFP and the gradient method under relatively stable soil moisture conditions. This study deepens our understanding and improves the accuracy of soil heat flux measurements. Calibration of SHFPs under various land covers and weather conditions is warranted in future studies. 
    more » « less
  2. Abstract The Amundsen Sea in West Antarctica features rapidly thinning ice shelves, large polynyas, and sizable spring phytoplankton blooms. Although considerable effort has gone into characterizing heat fluxes between the Amundsen Sea, its associated ice shelves, and the overlying atmosphere, the effect of the phytoplankton blooms on the distribution of heat remains poorly understood. In this modeling study, we implement a feedback from biogeochemistry onto physics into MITgcm‐BLING and use it to show that high levels of chlorophyll—concentrated in the Amundsen Sea Polynya and the Pine Island Polynya—have the potential to increase springtime surface warming in polynyas by steepening the attenuation profile of solar radiation with depth. The chlorophyll‐associated warm anomaly (on average between +0.2C and +0.3C) at the surface is quickly dissipated to the atmosphere, by increases in longwave, latent and sensible heat loss from open water areas. Outside of the coastal polynyas, the summertime warm anomaly leads to an average sea ice thinning of 1.7 cm across the region, and stimulates up to 20% additional seasonal melting near the fronts of ice shelves. The accompanying cold anomaly, caused by shading of deeper waters, persists year‐round and affects a decrease in the volume of Circumpolar Deep Water on the continental shelf. This cooling ultimately leads to an average sea ice thickening of 3.5 cm and, together with associated changes to circulation, reduces basal melting of Amundsen Sea ice shelves by approximately 7% relative to the model scenario with no phytoplankton bloom. 
    more » « less
  3. Abstract Air‐sea heat and moisture fluxes modulate the surface energy balance and oceanic and atmospheric heat transport across all timescales. Spatial gradients of these fluxes, on a multitude of spatial scales, also have significant impacts on the ocean and atmosphere. Nevertheless, analysis of these gradients, and discussion regarding our ability to represent them, is relatively absent within the community. This letter discusses their importance and presents a wintertime climatology. Their sensitivity to spatiotemporal scale and choice of data set is also examined in the mid‐latitudes. A lead‐lag analysis illustrates that wintertime air‐sea heat flux gradients in the Gulf Stream can precede the North Atlantic Oscillation by ∼1 month. A lack of observations and thus validation of air‐sea heat flux gradients represents a significant gap in our understanding of how air‐sea processes affect weather and climate, and warrants increased attention from the observational and modeling communities. 
    more » « less