Abstract Persistence across undergraduate science, technology, engineering, and mathematics (STEM) programs is exceptionally low. Recent studies have shown that social support and sense of belonging are particularly important for students who are historically underrepresented in STEM, yet few interventions have directly targeted or investigated these factors. This qualitative study investigates low‐income, high‐achieving undergraduate STEM students' perceptions of their belonging in the context of a 2‐year peer social support group intervention. Interview analysis of 11 participants demonstrates that these STEM students attribute their sense of belonging to feelings or displays of comfort, commonality, community, and concerted effort. The peer group facilitated increases in participants' social support and sense of belonging by allowing participants to build friendships, recognize shared experiences, connect to their campus, build confidence with peers, and feel supported in their non‐academic and academic struggles. Although the program's main objective was to build participants' sense of belonging, the social support provided through the peer group also acted as a mechanism for increasing information‐related social capital. We recommend the implementation of similar non‐academic, supportive social spaces to increase the sense of belonging and overall persistence of low‐income STEM students.
more »
« less
Piloting a Socio-Culturally Responsive Peer-Mentoring Program to Promote HLX+ Students’ Sense of Belonging in Engineering Education: Lessons Learned from Year 1
An abundance of literature demonstrates that women’s and minorities’ sense of belonging, or lack thereof, influences their academic performance and persistence in STEM education and careers. To address this problem, we developed a holistic, socio-culturally responsive peer-mentoring program that provided an academic, institutional, and social support system for first-year engineering students. The purpose of this program, Promoviendo el Éxito Estudiantil a través de un Sistema de Apollo (PromESA), is to increase students’ sense of belonging and, by extension, their persistence and graduation rates in engineering, particularly for Latinx students and their intersectionalities. The pilot mentoring program was integrated into a first-year sequence of courses where students would meet with their peer-mentors (i.e., Compañeros/as) during class time. Compañeros/as (Compas for short) provided their mentees with assistance such as tutoring, advising, directing them to available university services and, equally important, emotional support through building friendship, confirmation, and affirmation to improve the students’ sense of belonging. The research seeks to identify academic, institutional, and social support elements that positively influence students’ sense of belonging and explore how integrating Latinx cultural assets and values influence Latinx students’ perceptions of engineering. Findings from the first year of implementation reveal that participants with peer-mentors from their academic major reported a higher sense of belonging than participants with peer-mentors from other academic majors. Also, participants reported receiving social support (i.e., peer and classroom), regardless of academic major. Participant feedback was mixed, with some reporting that peer-mentoring was a key contributor to their sense of belonging while others reported that it contributed somewhat to their sense of belonging and a few reported that it did not contribute to their sense of belonging at all.
more »
« less
- Award ID(s):
- 2317283
- PAR ID:
- 10426604
- Date Published:
- Journal Name:
- 2023 American Society of Engineering Education Annual Conference & Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The purpose of this longitudinal investigation was to examine the effectiveness of a comprehensive, integrated curricular and co-curricular program designed to build community, provide academic and social support, and promote engagement in academically purposeful activities resulting in more equitable environments for historically underrepresented, low-income science, technology, engineering, and mathematics (STEM) information technology (IT) students. The study also focused on the role that the sense of belonging and academic hope play in enhancing persistence to degree completion. Program participants had significantly higher persistence rates compared to a matched comparison group. Additionally, STEM-specific belonging and academic hope significantly predicted students’ intentions to persist to degree completion in IT. A major finding was that STEM domain–specific belonging was a stronger predictor of persistence than general belonging. Our investigation has implications for the role that cohort-based programs, industry engagement, peer mentoring, proactive advising, undergraduate research opportunities, career preparation, and leveraging need-based financial aid play in ensuring equity in STEM.more » « less
-
eer mentoring in college programs of study is not uncommon. However, most of the time, peer mentoring is focused on supporting students in traditional solving problems they are assigned as part of the coursework. Our work extends beyond examining conventional forms of peer mentoring by examining the work of peer mentors supporting students' work in a first-year engineering design course based in a makerspace classroom. The problems students solve in the makerspace classroom-based course typically have a wide array of possible solutions, which differs from many problems students solve in traditional courses with peer mentor support in which there is a single solution. Further, students in the makerspace classroom-based course are also expected to work in teams, which adds another layer of complexity to the role of the peer mentors working in the course. Our research goal was to empirically document the peer mentors' interactions with students and the students learning gains and development due to working with the peer mentors. To gather data from the students working with the peer mentors, we added a series of additional questions to their end-of-semester course evaluations. Note that the university's Institutional Review Board reviewed and approved this process. The questions we added included, "Please share how the peer mentors influenced your sense of belonging within the College of Engineering." "Please share how the peer mentors helped your group function as teams." and "Please share how the peer mentors helped you develop confidence in your abilities to do engineering." We also included companion Likert scale items such as "The peer mentors helped our team work together." and "The peer mentors helped us resolve conflicts in our group." We found that peer mentors tended to be perceived as a resource, supportive and reassuring to the students and meeting the students where they are. Thus, the mentors provided students with emotional, personal, and technical support to influence the students' sense of belonging to the college. The mentors helped the students function in teams by encouraging them to collaborate and include all. In their efforts to help students develop confidence in their abilities, the mentors worked to meet the students where they were at and reassured the students' capacity to succeed. They were also likely to encourage students to seek help, support their technical skill development, and encourage the students to apply their knowledge. The final focus of our research was on the mentors engaging in helping students feel part of the engineering community. We found the mentors encouraged the students to join an engineering club or attend engineering events. In our final report, we provide details of our data, both quantitative and qualitative, examples of the student's responses, the implications of our findings, and ideas for using our research to support mentor preparation programs to maximize the benefits of peer mentoring in maker spaces and other non-traditional engineering learning environments.more » « less
-
As part of an NSF IUSE/PFE:RED grant, the Clemson University Glenn Department of Civil Engineering instituted a peer mentoring program, called CE-MENT to attract and support students through a key transition point in the curriculum between general engineering and entry into the major. The program name has a dual meaning, as cement is defined as a binding agent or something serving to unite firmly. As freshmen, underrepresented minorities and females are supported by the Programs for Educational Enrichment and Retention (PEER) and Women in Science and Engineering (WISE). However, these programs do not carry forward as students leave the common first year in General Engineering and move into their respective majors. Through the involvement of junior and senior engineering students as peer mentors for incoming sophomore students in the engineering department, the mentoring program provides valuable one-on-one guidance and contributes positively to the engineering community. The peer mentoring program was formulated to foster interaction role modeling and interdependencies among students. Studies show that such interactions and interdependencies foster students' positive perceptions of their future selves in the profession. The peer mentoring program provides the opportunity to create motivational preferences for collaboration, and to foster personal motivation for academic achievement. Specifically, the program sought to determine: the change in students' attitudes toward peer mentoring activities during their years of engineering study (from mentee to mentor); how participating in peer mentoring affects students' satisfaction with program experiences (i.e., transition, belonging, and academic success); and their intent to remain in the program.more » « less
-
With support from NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM), the Culturally Adaptive Pathway to Success (CAPS) program aims to build an inclusive pathway to accelerate the graduation for academically talented, low-income students in Engineering and Computer Science majors at [University Name], which traditionally serves the underrepresented and educationally disadvantaged minority students in the [City Name area]. CAPS focuses on progressively developing social and career competence in our students via three integrated interventions: (1) Mentor+, a relationally informed advising strategy that encourages students to see their academic work in relation to their families and communities; (2) peer cohorts, providing social support structure for students and enhancing their sense of belonging in engineering and computer science classrooms and beyond; and (3) professional development from faculty who have been trained in difference-education theory, so that they can support students with varying levels of understanding of the antecedents of college success. To ensure success of these interventions, the CAPS program places great emphasis on developing culturally responsive advisement methods and training faculty mentors to facilitate creating a culture of culturally adaptive advising. This paper presents the CAPS progress in the past two project years. In particular, we will share several changes that we have made after the first project year to improve several key components of the program - recruitment, cohort building, and mentor training. The program strengthened the recruitment by actively involving scholars and faculties in reaching out to students and successfully recruited more scholars for the second cohort (16 scholars) than the first cohort (12 scholars). Also, the program has initiated new activities for peer-mentoring and cohort gathering within each major. As continuous development of the mentor training, the program has added a training session focusing on various aspects of intersectionality as it relates to individual’s social identities, and how mentors can use these knowledge to better interact with mentees. In addition to these changes, we will also report findings on how the program impacted on scholars’ academic growth and mentors’ understanding about the culturally adaptive advisement to answer the CAPS research questions (a) how these interventions affect the development of social belonging and engineering identity of CAPS scholars, and (b) the impact of Mentor+ on academic resilience and progress to degree. The program conducted qualitative data collection and analysis via focus group meetings and interviews as well as quantitative data collection and analysis using academic records and surveys. Our findings will help enhance the CAPS program and establish a sustainable Scholars Support Program at the university, which can be implemented with scholarships funded by other sources, and which can be transferred to similar culturally diverse institutions to increase success for students who have socio-economic challenges.more » « less
An official website of the United States government

