Abstract A critical goal of cognitive neuroscience is to predict behavior from neural structure and function, thereby providing crucial insights into who might benefit from clinical and/or educational interventions. Across development, the strength of functional connectivity among a distributed set of brain regions is associated with children’s math skills. Therefore, in the present study we use connectome-based predictive modeling to investigate whether functional connectivity during numerical processing and at rest “predicts” children’s math skills (N = 31, Mage = 9.21 years, 14 Female). Overall, we found that functional connectivity during symbolic number comparison and rest, but not during nonsymbolic number comparison, predicts children’s math skills. Each task revealed a largely distinct set of predictive connections distributed across canonical brain networks and major brain lobes. Most of these predictive connections were negatively correlated with children’s math skills so that weaker connectivity predicted better math skills. Notably, these predictive connections were largely nonoverlapping across task states, suggesting children’s math abilities may depend on state-dependent patterns of network segregation and/or regional specialization. Furthermore, the current predictive modeling approach moves beyond brain–behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.
more »
« less
Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain
Abstract Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
more »
« less
- Award ID(s):
- 1734735
- PAR ID:
- 10426655
- Publisher / Repository:
- DOI PREFIX: 10.1162
- Date Published:
- Journal Name:
- Journal of Cognitive Neuroscience
- Volume:
- 35
- Issue:
- 8
- ISSN:
- 0898-929X
- Page Range / eLocation ID:
- p. 1212-1228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kay, Kendrick (Ed.)A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating – in a highly empirically constrained manner – the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region’s unique intrinsic “connectivity fingerprint” was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain’s intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.more » « less
-
Number sense is essential for early mathematical development but it is compromised in children with mathematical disabilities (MD). Here we investigate the impact of a personalized 4-week Integrated Number Sense (INS) tutoring program aimed at improving the connection between nonsymbolic (sets of objects) and symbolic (Arabic numerals) representations in children with MD. Utilizing neural pattern analysis, we found that INS tutoring not only improved cross-format mapping but also significantly boosted arithmetic fluency in children with MD. Critically, the tutoring normalized previously low levels of cross-format neural representations in these children to pre-tutoring levels observed in typically developing, especially in key brain regions associated with numerical cognition. Moreover, we identified distinct, ‘inverted U-shaped’ neurodevelopmental changes in the MD group, suggesting unique neural plasticity during mathematical skill development. Our findings highlight the effectiveness of targeted INS tutoring for remediating numerical deficits in MD, and offer a foundation for developing evidence-based educational interventions. Significance StatementFocusing on neural mechanisms, our study advances understanding of how numerical problem-solving can be enhanced in children with mathematical disabilities (MD). We evaluated an integrated number sense tutoring program designed to enhance connections between concrete (e.g. 2 dots) and symbolic (e.g. “2”) numerical representations. Remarkably, the tutoring program not only improved these children’s ability to process numbers similarly across formats but also enhanced their arithmetic skills, indicating transfer of learning to related domains. Importantly, tutoring normalized brain processing patterns in children with MD to resemble those of typically developing peers. These insights highlight the neural bases of successful interventions for MD, offering a foundation for developing targeted educational strategies that could markedly improve learning outcomes for children facing these challenges.more » « less
-
Adaptability is a distinguishing feature of the human species: We thrive as hunter-gatherers, farmers, and urbanites. What properties of our brains make us highly adaptable? Here we review neuroscience studies of sensory loss, language acquisition, and cultural skills (reading, mathematics, programming). The evidence supports a flexible specialization account. On the one hand, adaptation is enabled by evolutionarily prepared flexible learning systems, both domain-specific social learning systems (e.g., language) and domain-general systems (frontoparietal reasoning). On the other hand, the functional flexibility of our neural wetware enables us to acquire cognitive capacities not selected for by evolution. Heightened plasticity during a protracted period of development enhances cognitive flexibility. Early in life, local cortical circuits are capable of acquiring a wide range of cognitive capacities. Exuberant cross-network connectivity makes it possible to combine old neural parts in new ways, enabling cognitive flexibility such as language acquisition across modalities (spoken, signed, braille) and cultural skills (math, programming). Together, these features of the human brain make it uniquely adaptable.more » « less
-
Abstract Determining the repertoire of a microbe's molecular functions is a central question in microbial biology. Modern techniques achieve this goal by comparing microbial genetic material against reference databases of functionally annotated genes/proteins or known taxonomic markers such as 16S rRNA. Here, we describe a novel approach to exploring bacterial functional repertoires without reference databases. Our Fusion scheme establishes functional relationships between bacteria and assigns organisms to Fusion-taxa that differ from otherwise defined taxonomic clades. Three key findings of our work stand out. First, bacterial functional comparisons outperform marker genes in assigning taxonomic clades. Fusion profiles are also better for this task than other functional annotation schemes. Second, Fusion-taxa are robust to addition of novel organisms and are, arguably, able to capture the environment-driven bacterial diversity. Finally, our alignment-free nucleic acid-based Siamese Neural Network model, created using Fusion functions, enables finding shared functionality of very distant, possibly structurally different, microbial homologs. Our work can thus help annotate functional repertoires of bacterial organisms and further guide our understanding of microbial communities.more » « less
An official website of the United States government
