skip to main content


Title: New constraints on the kinematic, relativistic, and evolutionary properties of the PSR J1757−1854 double neutron star system
ABSTRACT

PSR J1757−1854 is one of the most relativistic double neutron star binary systems known in our Galaxy, with an orbital period of $P_\text{b}=4.4\, \text{h}$ and an orbital eccentricity of e = 0.61. As such, it has promised to be an outstanding laboratory for conducting tests of relativistic gravity. We present the results of a 6-yr campaign with the 100-m Green Bank and 64-m Parkes radio telescopes, designed to capitalize on this potential. We identify secular changes in the profile morphology and polarization of PSR J1757−1854, confirming the presence of geodetic precession and allowing the constraint of viewing geometry solutions consistent with General Relativity. We also update PSR J1757−1854’s timing, including new constraints of the pulsar’s proper motion, post-Keplerian parameters, and component masses. We conclude that the radiative test of gravity provided by PSR J1757−1854 is fundamentally limited to a precision of 0.3 per cent due to the pulsar’s unknown distance. A search for pulsations from the companion neutron star is also described, with negative results. We provide an updated evaluation of the system’s evolutionary history, finding strong support for a large kick velocity of $w\ge 280\, \rm{km\,s}^{-1}$ following the second progenitor supernova. Finally, we reassess PSR J1757−1854’s potential to provide new relativistic tests of gravity. We conclude that a 3-σ constraint of the change in the projected semimajor axis ($\dot{x}$) associated with Lense–Thirring precession is expected no earlier than 2031. Meanwhile, we anticipate a 3-σ measurement of the relativistic orbital deformation parameter δθ as soon as 2026.

 
more » « less
NSF-PAR ID:
10426656
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5064-5085
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR J1910−5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified Fermi-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multicolour optical light curves obtained with ULTRACAM/New Technology Telescope in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR J1910−5320. icarus optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6 ± 0.2 or 1.4 ± 0.2 M⊙. The companion mass of either 0.45 ± 0.04 or $0.43^{+0.04}_{-0.03}$M⊙ also further confirms PSR J1910−5320 as an irradiated redback spider pulsar.

     
    more » « less
  2. Context. The PSR J2222−0137 binary system has a set of features that make it a unique laboratory for tests of gravity theories. Aims. To fully exploit the system’s potential for these tests, we aim to improve the measurements of its physical parameters, spin and orbital orientation, and post-Keplerian parameters, which quantify the observed relativistic effects. Methods. We describe an improved analysis of archival very long baseline interferometry (VLBI) data, which uses a coordinate convention in full agreement with that used in timing. We have also obtained much improved polarimetry of the pulsar with the Five hundred meter Aperture Spherical Telescope (FAST). We provide an improved analysis of significantly extended timing datasets taken with the Effelsberg, Nançay, and Lovell radio telescopes; this also includes previous timing data from the Green Bank Telescope. Results. From the VLBI analysis, we have obtained a new estimate of the position angle of the ascending node, Ω = 189 −18 +19 deg (all uncertainties are 68% confidence limits), and a new reference position for the pulsar with an improved and more conservative uncertainty estimate. The FAST polarimetric results, and in particular the detection of an interpulse, yield much improved estimates for the spin geometry of the pulsar, in particular an inclination of the spin axis of the pulsar of ∼84 deg. From the timing, we obtain a new ∼1% test of general relativity (GR) from the agreement of the Shapiro delay parameters and the rate of advance of periastron. Assuming GR in a self-consistent analysis of all effects, we obtain much improved masses: 1.831(10)  M ⊙ for the pulsar and 1.319(4)  M ⊙ for the white dwarf companion; the total mass, 3.150(14)  M ⊙ , confirms this as the most massive double degenerate binary known in the Galaxy. This analysis also yields the orbital orientation; in particular, the orbital inclination is 85.27(4) deg – indicating a close alignment between the spin of the pulsar and the orbital angular momentum – and Ω = 187.7(5.7) deg, which matches our new VLBI estimate. Finally, the timing also yields a precise measurement of the variation in the orbital period, Ṗ b = 0.251(8) × 10 −12 ss −1 ; this is consistent with the expected variation in the Doppler factor plus the orbital decay caused by the emission of gravitational waves predicted by GR. This agreement introduces stringent constraints on the emission of dipolar gravitational waves. 
    more » « less
  3. Abstract We present the results of a deep study of the neutron star (NS) population in the globular cluster M28 (NGC 6626), using the full 330 ks 2002–2015 ACIS data set from the Chandra X-ray Observatory and coordinated radio observations taken with the Green Bank Telescope (GBT) in 2015. We investigate the X-ray luminosity ( L X ), spectrum, and orbital modulation of the seven known compact binary millisecond pulsars in the cluster. We report two simultaneous detections of the redback PSR J1824−2452I (M28I) and its X-ray counterpart at L X = [8.3 ± 0.9] × 10 31 erg s −1 . We discover a double-peaked X-ray orbital flux modulation in M28I during its pulsar state, centered around pulsar inferior conjunction. We analyze the spectrum of the quiescent NS low-mass X-ray binary to constrain its mass and radius. Using both hydrogen and helium NS atmosphere models, we find an NS radius of R = 9.2–11.5 km and R = 13.0–17.5 km, respectively, for an NS mass of 1.4 M ⊙ (68% confidence ranges). We also search for long-term variability in the 46 brightest X-ray sources and report the discovery of six new variable low-luminosity X-ray sources in M28. 
    more » « less
  4. Abstract

    For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented.

     
    more » « less
  5. Abstract

    We explore the fascinating eclipses and dynamics of the compact hierarchical triple-star system KOI-126 (KIC 5897826). This system is composed of a pair of M-dwarf stars (KOI-126 B and C) in a 1.74 day orbit that revolve around an F star (KOI-126 A) every 34 days. Complex eclipse shapes are created as the M stars transit the F star, due to two effects: (1) the duration of the eclipse is a significant fraction of the M-star orbital period, so the prograde or retrograde motion of the M stars in their orbit lead to unusually short or long duration eclipses; (2) due to 3-body dynamics, the M-star orbit precesses with an astonishingly quick timescale of 1.74 yr for the periastron (apsidal) precession, and 2.73 yr for the inclination and nodal angle precession. Using the full Kepler data set, supplemented with ground-based photometry, plus 29 radial velocity measurements that span 6 yr, our photodynamical modeling yields masses ofMA= 1.2713 ± 0.0047M(0.37%),MB= 0.23529 ± 0.00062M(0.26%), andMC= 0.20739 ± 0.00055M(0.27%) and radii ofRA= 1.9984 ± 0.0027R(0.14%),RB= 0.25504 ± 0.00076R(0.3%), andRC= 0.23196 ± 0.00069R(0.3%). We also estimate the apsidal motion constant of the M dwarfs, a parameter that characterizes the internal mass distribution. Although it is not particularly precise, we measure a mean apsidal motion constant,k2¯, of0.0460.028+0.046, which is approximately 2σlower than the theoretical model prediction of 0.150. We explore possible causes for this discrepancy.

     
    more » « less