skip to main content


Title: ChemoGraph: Interactive Visual Exploration of the Chemical Space
Abstract

Exploratory analysis of the chemical space is an important task in the field of cheminformatics. For example, in drug discovery research, chemists investigate sets of thousands of chemical compounds in order to identify novel yet structurally similar synthetic compounds to replace natural products. Manually exploring the chemical space inhabited by all possible molecules and chemical compounds is impractical, and therefore presents a challenge. To fill this gap, we present ChemoGraph, a novel visual analytics technique for interactively exploring related chemicals. In ChemoGraph, we formalize a chemical space as a hypergraph and apply novel machine learning models to compute related chemical compounds. It uses a database to find related compounds from a known space and a machine learning model to generate new ones, which helps enlarge the known space. Moreover, ChemoGraph highlights interactive features that support users in viewing, comparing, and organizing computationally identified related chemicals. With a drug discovery usage scenario and initial expert feedback from a case study, we demonstrate the usefulness of ChemoGraph.

 
more » « less
PAR ID:
10426701
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
42
Issue:
3
ISSN:
0167-7055
Format(s):
Medium: X Size: p. 13-24
Size(s):
p. 13-24
Sponsoring Org:
National Science Foundation
More Like this
  1. Humans are exposed to numerous compounds daily, some of which have adverse effects on health. Computational approaches for modeling toxicological data in conjunction with machine learning algorithms have gained popularity over the last few years. Machine learning approaches have been used to predict toxicity-related biological activities using chemical structure descriptors. However, toxicity-related proteomic features have not been fully investigated. In this study, we construct a computational pipeline using machine learning models for predicting the most important protein features responsible for the toxicity of compounds taken from the Tox21 dataset that is implemented within the multiscale Computational Analysis of Novel Drug Opportunities (CANDO) therapeutic discovery platform. Tox21 is a highly imbalanced dataset consisting of twelve in vitro assays, seven from the nuclear receptor (NR) signaling pathway and five from the stress response (SR) pathway, for more than 10,000 compounds. For the machine learning model, we employed a random forest with the combination of Synthetic Minority Oversampling Technique (SMOTE) and the Edited Nearest Neighbor (ENN) method (SMOTE+ENN), which is a resampling method to balance the activity class distribution. Within the NR and SR pathways, the activity of the aryl hydrocarbon receptor (NR-AhR) and the mitochondrial membrane potential (SR-MMP) were two of the top-performing twelve toxicity endpoints with AUCROCs of 0.90 and 0.92, respectively. The top extracted features for evaluating compound toxicity were analyzed for enrichment to highlight the implicated biological pathways and proteins. We validated our enrichment results for the activity of the AhR using a thorough literature search. Our case study showed that the selected enriched pathways and proteins from our computational pipeline are not only correlated with AhR toxicity but also form a cascading upstream/downstream arrangement. Our work elucidates significant relationships between protein and compound interactions computed using CANDO and the associated biological pathways to which the proteins belong for twelve toxicity endpoints. This novel study uses machine learning not only to predict and understand toxicity but also elucidates therapeutic mechanisms at a proteomic level for a variety of toxicity endpoints. 
    more » « less
  2. null (Ed.)
    The advancements of information technology and related processing techniques have created a fertile base for progress in many scientific fields and industries. In the fields of drug discovery and development, machine learning techniques have been used for the development of novel drug candidates. The methods for designing drug targets and novel drug discovery now routinely combine machine learning and deep learning algorithms to enhance the efficiency, efficacy, and quality of developed outputs. The generation and incorporation of big data, through technologies such as high-throughput screening and high through-put computational analysis of databases used for both lead and target discovery, has increased the reliability of the machine learning and deep learning incorporated techniques. The use of these virtual screening and encompassing online information has also been highlighted in developing lead synthesis pathways. In this review, machine learning and deep learning algorithms utilized in drug discovery and associated techniques will be discussed. The applications that produce promising results and methods will be reviewed. 
    more » « less
  3. Abstract

    The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies. This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment, bridging the gap between transcriptomic data analysis and drug discovery. We initiated our approach by conducting differential gene expression analysis on addiction-related transcriptomic data to identify key genes. We propose a novel topological differentiation to identify key genes from a protein–protein interaction network derived from DEGs. This method utilizes persistent Laplacians to accurately single out pivotal nodes within the network, conducting this analysis in a multiscale manner to ensure high reliability. Through rigorous literature validation, pathway analysis and data-availability scrutiny, we identified three pivotal molecular targets, mTOR, mGluR5 and NMDAR, for drug repurposing from DrugBank. We crafted machine learning models employing two natural language processing (NLP)-based embeddings and a traditional 2D fingerprint, which demonstrated robust predictive ability in gauging binding affinities of DrugBank compounds to selected targets. Furthermore, we elucidated the interactions of promising drugs with the targets and evaluated their drug-likeness. This study delineates a multi-faceted and comprehensive analytical framework, amalgamating bioinformatics, topological data analysis and machine learning, for drug repurposing in addiction treatment, setting the stage for subsequent experimental validation. The versatility of the methods we developed allows for applications across a range of diseases and transcriptomic datasets.

     
    more » « less
  4. Abstract

    SummaryMicrobial natural products represent a major source of bioactive compounds for drug discovery. Among these molecules, nonribosomal peptides (NRPs) represent a diverse class that include antibiotics, immunosuppressants, anticancer agents, toxins, siderophores, pigments, and cytostatics. The discovery of novel NRPs remains a laborious process because many NRPs consist of nonstandard amino acids that are assembled by nonribosomal peptide synthetases (NRPSs). Adenylation domains (A-domains) in NRPSs are responsible for selection and activation of monomers appearing in NRPs. During the past decade, several support vector machine-based algorithms have been developed for predicting the specificity of the monomers present in NRPs. These algorithms utilize physiochemical features of the amino acids present in the A-domains of NRPSs. In this article, we benchmarked the performance of various machine learning algorithms and features for predicting specificities of NRPSs and we showed that the extra trees model paired with one-hot encoding features outperforms the existing approaches. Moreover, we show that unsupervised clustering of 453 560 A-domains reveals many clusters that correspond to potentially novel amino acids. While it is challenging to predict the chemical structure of these amino acids, we developed novel techniques to predict their various properties, including polarity, hydrophobicity, charge, and presence of aromatic rings, carboxyl, and hydroxyl groups.

     
    more » « less
  5. De novodesign can be used to explore vast areas of chemical space in computational lead discovery. As a complement to virtual screening, from‐scratch construction of molecules is not limited to compounds in pre‐existing vendor catalogs. Here, we present an iterative fragment growth method, integrated into the program DOCK, in which new molecules are built using rules for allowable connections based on known molecules. The method leverages DOCK's advanced scoring and pruning approaches and users can define very specific criteria in terms of properties or features to customize growth toward a particular region of chemical space. The code was validated using three increasingly difficult classes of calculations: (1) Rebuilding known X‐ray ligands taken from 663 complexes using only their component parts (focused libraries), (2) construction of new ligands in 57 drug target sites using a library derived from ∼13M drug‐like compounds (generic libraries), and (3) application to a challenging protein‐protein interface on the viral drug target HIVgp41. The computational testing confirms that thede novoDOCK routines are robust and working as envisioned, and the compelling results highlight the potential utility for designing new molecules against a wide variety of important protein targets. © 2017 Wiley Periodicals, Inc.

     
    more » « less