skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A computational and experimental examination of the CID of phosphorylated serine-H +
Award ID(s):
2301606 1763652 2018427 2320718
PAR ID:
10426734
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Physics Letters
Volume:
819
Issue:
C
ISSN:
0009-2614
Page Range / eLocation ID:
140442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A search for D 0 meson decays to the π + π e + e and K + K e + e final states is reported using a sample of proton-proton collisions collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb 1 . The decay D 0 π + π e + e is observed for the first time when requiring that the two electrons are consistent with coming from the decay of a ϕ or ρ 0 / ω meson. The corresponding branching fractions are measured relative to the D 0 K π [ e + e ] ρ 0 / ω decay, where the two electrons are consistent with coming from the decay of a ρ 0 or ω meson. No evidence is found for the D 0 K + K e + e decay and world-best limits are set on its branching fraction. The results are compared to, and found to be consistent with, the branching fractions of the D 0 π + π μ + μ and D 0 K + K μ + μ decays recently measured by LHCb and confirm lepton universality at the current precision. © 2025 CERN, for the LHCb Collaboration2025CERN 
    more » « less
  2. The first test of lepton flavor universality between muons and electrons using B + K + π + π + ( = e , μ ) decays is presented. The measurement is performed with data from proton-proton collisions collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb 1 . The ratio of branching fractions between B + K + π + π e + e and B + K + π + π μ + μ decays is measured in the dilepton invariant-mass-squared range 1.1 < q 2 < 7.0 GeV 2 / c 4 and is found to be R K π π 1 = 1.3 1 0.17 + 0.18 ( stat ) 0.09 + 0.12 ( syst ) , in agreement with the standard model prediction. The first observation of the B + K + π + π e + e decay is also reported. © 2025 CERN, for the LHCb Collaboration2025CERN 
    more » « less
  3. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less