skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The C∞ -isomorphism property for a class of singularly-weighted x-ray transforms
Abstract We study a one-parameter family of self-adjoint normal operators for the x-ray transform on the closed Euclidean disk D , obtained by considering specific singularly weighted L 2 topologies. We first recover the well-known singular value decompositions in terms of orthogonal disk (or generalized Zernike) polynomials, then prove that each such realization is an isomorphism of C ∞ ( D ) . As corollaries: we give some range characterizations; we show how such choices of normal operators can be expressed as functions of two distinguished differential operators. We also show that the isomorphism property also holds on a class of constant-curvature, circularly symmetric simple surfaces. These results allow to design functional contexts where normal operators built out of the x-ray transform are provably invertible, in Fréchet and Hilbert spaces encoding specific boundary behavior.  more » « less
Award ID(s):
1943580
PAR ID:
10426950
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
2
ISSN:
0266-5611
Page Range / eLocation ID:
024001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On simple geodesic disks of constant curvature, we derive new functional relations for the geodesic X-ray transform, involving a certain class of elliptic differential operators whose ellipticity degenerates normally at the boundary. We then use these relations to derive sharp mapping properties for the X-ray transform and its corresponding normal operator. Finally, we discuss the possibility of theoretically rigorous regularized inversions for the X-ray transform when defined on such manifolds. 
    more » « less
  2. We study the mapping properties of the X-ray transform and its adjoint on spaces of conormal functions on Riemannian manifolds with strictly convex boundary. After desingularizing the double fibration, and expressing the X-ray transform and its adjoint using b-fibrations operations, we employ tools related to Melrose’s pushforward theorem to describe the mapping properties of these operators on various classes of polyhomogeneous functions, with special focus to computing how leading order coefficients are transformed. The appendix explains that a naive use of the pushforward theorem leads to a suboptimal result with non-sharp index sets. Our improved results are obtained by closely inspecting Mellin functions which arise in the process, showing that certain coefficients vanish. This recovers some sharp results known by other methods. A number of consequences for the mapping properties of the X-ray transform and its normal operator(s) follow. 
    more » « less
  3. Guruswami, Venkatesan (Ed.)
    We study the complexity of isomorphism problems for d-way arrays, or tensors, under natural actions by classical groups such as orthogonal, unitary, and symplectic groups. These problems arise naturally in statistical data analysis and quantum information. We study two types of complexity-theoretic questions. First, for a fixed action type (isomorphism, conjugacy, etc.), we relate the complexity of the isomorphism problem over a classical group to that over the general linear group. Second, for a fixed group type (orthogonal, unitary, or symplectic), we compare the complexity of the isomorphism problems for different actions. Our main results are as follows. First, for orthogonal and symplectic groups acting on 3-way arrays, the isomorphism problems reduce to the corresponding problems over the general linear group. Second, for orthogonal and unitary groups, the isomorphism problems of five natural actions on 3-way arrays are polynomial-time equivalent, and the d-tensor isomorphism problem reduces to the 3-tensor isomorphism problem for any fixed d >= 3. For unitary groups, the preceding result implies that LOCC classification of tripartite quantum states is at least as difficult as LOCC classification of d-partite quantum states for any d. Lastly, we also show that the graph isomorphism problem reduces to the tensor isomorphism problem over orthogonal and unitary groups. 
    more » « less
  4. We initiate the study of X-ray tomography on sub-Riemannian manifolds, for which the Heisenberg group exhibits the simplest nontrivial example. With the language of the group Fourier transform, we prove an operator-valued incarnation of the Fourier Slice Theorem, and apply this new tool to show that a sufficiently regular function on the Heisenberg group is determined by its line integrals over sub-Riemannian geodesics. We also consider the family of taming metrics $$g_\epsilon$$ approximating the sub-Riemannian metric, and show that the associated X-ray transform is injective for all $$\epsilon > 0$$. This result gives a concrete example of an injective X-ray transform in a geometry with an abundance of conjugate points. 
    more » « less
  5. Abstract Strained materials can exhibit drastically modified physical properties in comparison to their fully relaxed analogues. We report on the x-ray absorption spectra (XAS) and magnetic circular dichroism (XMCD) of a strained NiFe 2 O 4 inverse spinel film grown on a symmetry matched single crystal MgGa 2 O 4 substrate. The Ni XAS spectra exhibit a sizable difference in the white line intensity for measurements with the x-ray electric field parallel to the film plane (normal incidence) vs when the electric field is at an angle (off-normal). A considerable difference is also observed in the Fe L 2,3 XMCD spectrum. Modeling of the XAS and XMCD spectra indicate that the modified energy ordering of the cation 3 d states in the strained film leads to a preferential filling of 3 d states with out-of-plane character. In addition, the results point to the utility of x-ray spectroscopy in identifying orbital populations even with elliptically polarized x-rays. 
    more » « less