skip to main content

Title: An Unsupervised Approach for Simultaneous Visual Odometry and Single Image Depth Estimation
Visual odometry (VO) and single image depth estimation are critical for robot vision, 3D reconstruction, and camera pose estimation that can be applied to autonomous driving, map building, augmented reality and many other applications. Various supervised learning models have been proposed to train the VO or single image depth estimation framework for each targeted scene to improve the performance recently. However, little effort has been made to learn these separate tasks together without requiring the collection of a significant number of labels. This paper proposes a novel unsupervised learning approach to simultaneously perceive VO and single image depth estimation. In our framework, either of these tasks can benefit from each other through simultaneously learning these two tasks. We correlate these two tasks by enforcing depth consistency between VO and single image depth estimation. Based on the single image depth estimation, we can resolve the most common and challenging scaling issue of monocular VO. Meanwhile, through training from a sequence of images, VO can enhance the single image depth estimation accuracy. The effectiveness of our proposed method is demonstrated through extensive experiments compared with current state-of-the-art methods on the benchmark datasets.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE International Joint Conference on Neural Network (IJCNN)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Single image depth estimation is a critical issue for robot vision, augmented reality, and many other applications when an image sequence is not available. Self-supervised single image depth estimation models target at predicting accurate disparity map just from one single image without ground truth supervision or stereo image pair during real applications. Compared with direct single image depth estimation, single image stereo algorithm can generate the depth from different camera perspectives. In this paper, we propose a novel architecture to infer accurate disparity by leveraging both spectral-consistency based learning model and view-prediction based stereo reconstruction algorithm. Direct spectral-consistency based method can avoid false positive matching in smooth regions. Single image stereo can preserve more distinct boundaries from another camera perspective. By learning confidence maps and designing a fusion strategy, the two disparities from the two approaches are able to be effectively fused to produce the refined disparity. Extensive experiments and ablations indicate that our method exploits both advantages of spectral consistency and view prediction, especially in constraining object boundaries and correcting wrong predicting regions. 
    more » « less
  2. Self-supervised depth estimation has recently demonstrated promising performance compared to the supervised methods on challenging indoor scenes. However, the majority of efforts mainly focus on exploiting photometric and geometric consistency via forward image warping and backward image warping, based on monocular videos or stereo image pairs. The influence of defocus blur to depth estimation is neglected, resulting in a limited performance for objects and scenes in out of focus. In this work, we propose the first framework for simultaneous depth estimation from a single image and image focal stacks using depth-from-defocus and depth-from-focus algorithms. The proposed network is able to learn optimal depth mapping from the information contained in the blur of a single image, generate a simulated image focal stack and all-in-focus image, and train a depth estimator from an image focal stack. In addition to the validation of our method on both synthetic NYUv2 dataset and real DSLR dataset, we also collect our own dataset using a DSLR camera and further verify on it. Experiments demonstrate that our system surpasses the state-of-the-art supervised depth estimation method over 4% in accuracy and achieves superb performance among the methods without direct supervision on the synthesized NYUv2 dataset, which has been rarely explored. 
    more » « less
  3. Facial attribute recognition is conventionally computed from a single image. In practice, each subject may have multiple face images. Taking the eye size as an example, it should not change, but it may have different estimation in multiple images, which would make a negative impact on face recognition. Thus, how to compute these attributes corresponding to each subject rather than each single image is a profound work. To address this question, we deploy deep training for facial attributes prediction, and we explore the inconsistency issue among the attributes computed from each single image. Then, we develop two approaches to address the inconsistency issue. Experimental results show that the proposed methods can handle facial attribute estimation on either multiple still images or video frames, and can correct the incorrectly annotated labels. The experiments are conducted on two large public databases with annotations of facial attributes. 
    more » « less
  4. We present a method that takes as input a single dual-pixel image, and simultaneously estimates the image's defocus map---the amount of defocus blur at each pixel---and recovers an all-in-focus image. Our method is inspired from recent works that leverage the dual-pixel sensors available in many consumer cameras to assist with autofocus, and use them for recovery of defocus maps or all-in-focus images. These prior works have solved the two recovery problems independently of each other, and often require large labeled datasets for supervised training. By contrast, we show that it is beneficial to treat these two closely-connected problems simultaneously. To this end, we set up an optimization problem that, by carefully modeling the optics of dual-pixel images, jointly solves both problems. We use data captured with a consumer smartphone camera to demonstrate that, after a one-time calibration step, our approach improves upon prior works for both defocus map estimation and blur removal, despite being entirely unsupervised. 
    more » « less
  5. null (Ed.)
    The task of instance segmentation in videos aims to consistently identify objects at pixel level throughout the entire video sequence. Existing state-of-the-art methods either follow the tracking-bydetection paradigm to employ multi-stage pipelines or directly train a complex deep model to process the entire video clips as 3D volumes. However, these methods are typically slow and resourceconsuming such that they are often limited to offline processing. In this paper, we propose SRNet, a simple and efficient framework for joint segmentation and tracking of object instances in videos. The key to achieving both high efficiency and accuracy in our framework is to formulate the instance segmentation and tracking problem into a unified spatial-relation learning task where each pixel in the current frame relates to its object center, and each object center relates to its location in the previous frame. This unified learning framework allows our framework to perform join instance segmentation and tracking through a single stage while maintaining low overheads among different learning tasks. Our proposed framework can handle two different task settings and demonstrates comparable performance with state-of-the-art methods on two different benchmarks while running significantly faster. 
    more » « less