skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Water-Soluble Pd Nanoparticles for the Anti-Markovnikov Oxidation of Allyl Benzene in Water
The catalytic activity and selectivity of two different water-soluble palladium nanoparticles capped with 5-(trimethylammonio)pentanethiolate and 6-(carboxylate)hexanethiolate ligands are investigated using the catalytic reaction of allyl benzene. The results show that the regioselective transformation of allyl benzene to 3-phenylpropanal occurs at room temperature and under atmospheric pressure in neat water via a Tsuji–Wacker type oxidation. Conventionally, the Tsuji–Wacker oxidation promotes the Markovnikov oxidation of terminal alkenes to their respective ketones in the presence of dioxygen. Water-soluble Pd nanoparticles, however, catalyze the anti-Markovnikov oxidation of allyl benzene to 3-phenylpropanal in up to 83% yields. Catalytic results of other aromatic alkenes suggest that the presence of benzylic hydrogen is a key to the formation of a p-allyl Pd intermediate and the anti-Markovnikov addition of H2O. The subsequent b-H elimination and tautomerization contribute to the formation of aldehyde products. Water-soluble Pd nanoparticles are characterized using nuclear magnetic resonance (NMR), UV–vis spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Catalysis results are examined using 1H NMR and/or GC-MS analyses of isolated reaction mixtures.  more » « less
Award ID(s):
1954659
PAR ID:
10427059
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
13
Issue:
2
ISSN:
2079-4991
Page Range / eLocation ID:
348
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. 
    more » « less
  2. null (Ed.)
    Although radical formation from a trialkylborane is well documented, the analogous reaction mode is unknown for trihaloboranes. We have discovered the generation of bromine radicals from boron tribromide and simple proton sources, such as water or tert -butanol, under open-flask conditions. Cyclopropanes bearing a variety of substituents were hydro- and deuterio-brominated to furnish anti-Markovnikov products in a highly regioselective fashion. NMR mechanistic studies and DFT calculations point to a radical pathway instead of the conventional ionic mechanism expected for BBr 3 . 
    more » « less
  3. We report on a new water-soluble cobalt(II) complex capable of water splitting bifunctionality, i.e., water reduction and water oxidation. The species [CoII(LQpy)H2O]ClO4 (1), where LQpy is the deprotonated form of the new tripodal ligand N1,N1-bis(pyridin-2-ylmethyl)-N2-(quinolin-8-yl)benzene-1,2-diamine, HLQpy, was developed aiming to replace an oxidation prone methylene group by a sturdy and redox stable quinoline. The molecular and electronic structures of 1 were evaluated by multiple spectroscopic, spectrometric, electrochemical and computational methods, and detailed pre- and post-catalytic studies were conducted to ascertain the molecular nature of the conversions. Complex 1 performs water reduction at a low onset overpotential (eta) of 0.65 V at pH 7, reaching TON3h 2900 (TOF 970 h-1) and TON18h 12 100 (TOF 672 h-1) with up to 98% faradaic efficiency (FE). Species 1 also promotes water oxidation at eta = 0.34 V under pH 8, achieving TON3h 193 (TOF 64 h-1) at 84% FE. Experimental and DFT results enabled us to propose reaction intermediates and mechanisms. 
    more » « less
  4. In this study, we present an investigation aimed at characterizing and understanding the synergistic interactions in encapsulated catalytic structures between the metal core ( i.e. , Pd) and oxide shell ( i.e. , TiO 2 , ZrO 2 , and CeO 2 ). Encapsulated catalysts were synthesized using a two-step procedure involving the initial colloidal synthesis of Pd nanoparticles (NPs) capped by various ligands and subsequent sol–gel encapsulation of the NPs with porous MO 2 (M = Ti, Zr, Ce) shells. The encapsulated catalytic systems displayed higher activity than the Pd/MO 2 supported structures due to unique physicochemical properties at the Pd–MO 2 interface. Pd@ZrO 2 exhibited the highest catalytic activity for CO oxidation. Results also suggested that the active sites in Pd encapsulated by an amorphous ZrO 2 shell structure were significantly more active than the crystalline oxide encapsulated structures at low temperatures. Furthermore, CO DRIFTS studies showed that Pd redispersion occurred under CO oxidation reaction conditions and as a function of the oxide shell composition, being observed in Pd@TiO 2 systems only, with potential formation of smaller NPs and oxide-supported Pd clusters after reaction. This investigation demonstrated that metal oxide composition and (in some cases) crystallinity play major roles in catalyst activity for encapsulated catalytic systems. 
    more » « less
  5. Abstract In this work, we employed flame spray pyrolysis (FSP), a high‐temperature synthesis method, to control the formation of Pd structures on the CeO2support. Multiple types of Pd structures deposited on CeO2are observed on FSP‐made samples. Our results show that the oxidizing environment during FSP synthesis facilitates the formation of incorporated Pd2+structures, along with highly dispersed Pd2+, Pd0nanoparticles, and Pd° clusters formed under the reducing synthesis condition. Notably, these Pd2+species remained stable at temperatures up to 400 °C. The catalysts containing both highly dispersed Pd2+nanoparticles and incorporated Pd2+species demonstrated superior methane oxidation activity, with higher turnover frequencies than those containing only one type of Pd2+structure. However, hydrothermal pretreatment in the presence of water vapor led to partial deactivation, likely due to structural alterations in the Pd species or the interaction with the CeO2support, which reduced the stability and effectiveness of the active sites. This study underscores the importance of both highly dispersed and incorporated Pd2+species in enhancing catalytic performance and highlights the challenges posed by water‐induced deactivation in practical applications. 
    more » « less