skip to main content


Title: The non-canonical Wnt receptor Ror2 is required for cartilage cell polarity and morphogenesis of the craniofacial skeleton in zebrafish
ABSTRACT Non-canonical/β-catenin-independent Wnt signaling plays crucial roles in tissue/cell polarity in epithelia, but its functions have been less well studied in mesenchymal tissues, such as the skeleton. Mutations in non-canonical Wnt signaling pathway genes cause human skeletal diseases such as Robinow syndrome and Brachydactyly Type B1, which disrupt bone growth throughout the endochondral skeleton. Ror2 is one of several non-canonical Wnt receptor/co-receptors. Here, we show that ror2−/− mutant zebrafish have craniofacial skeletal defects, including disruptions of chondrocyte polarity. ror1−/− mutants appear to be phenotypically wild type, but loss of both ror1 and ror2 leads to more severe cartilage defects, indicating partial redundancy. Skeletal defects in ror1/2 double mutants resemble those of wnt5b−/− mutants, suggesting that Wnt5b is the primary Ror ligand in zebrafish. Surprisingly, the proline-rich domain of Ror2, but not its kinase domain, is required to rescue its function in mosaic transgenic experiments in ror2−/− mutants. These results suggest that endochondral bone defects in ROR-related human syndromes reflect defects in cartilage polarity and morphogenesis.  more » « less
Award ID(s):
2028424
NSF-PAR ID:
10427073
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Development
Volume:
150
Issue:
8
ISSN:
0950-1991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on the genetic mechanisms underlying human skeletal development and disease have largely relied on studies in mice. However, recently the zebrafish has emerged as a popular model for skeletal research. Despite anatomical differences such as a lack of long bones in their limbs and no hematopoietic bone marrow, both the cell types in cartilage and bone as well as the genetic pathways that regulate their development are remarkably conserved between teleost fish and humans. Here we review recent studies that highlight this conservation, focusing specifically on the cartilaginous growth zones (GZs) of endochondral bones. GZs can be unidirectional such as the growth plates (GPs) of long bones in tetrapod limbs or bidirectional, such as in the synchondroses of the mammalian skull base. In addition to endochondral growth, GZs play key roles in cartilage maturation and replacement by bone. Recent studies in zebrafish suggest key roles for cartilage polarity in GZ function, surprisingly early establishment of signaling systems that regulate cartilage during embryonic development, and important roles for cartilage proliferation rather than hypertrophy in bone size. Despite anatomical differences, there are now many zebrafish models for human skeletal disorders including mutations in genes that cause defects in cartilage associated with endochondral GZs. These point to conserved developmental mechanisms, some of which operate both in cranial GZs and limb GPs, as well as others that act earlier or in parallel to known GP regulators. Experimental advantages of zebrafish for genetic screens, high resolution live imaging and drug screens, set the stage for many novel insights into causes and potential therapies for human endochondral bone diseases. 
    more » « less
  2. Abstract

    The nasal capsule, as the most rostral part of the chondrocranium, is a critical point of connection with the facial skeleton. Its fate may influence facial form, and the varied fates of cartilage may be a vehicle contributing to morphological diversity. Here, we review ontogenetic changes in the cartilaginous nasal capsule of mammals, and make new observations on perinatal specimens of two chiropteran species of different suborders. Our observations reveal some commonalities betweenRousettus leschenaultiiandDesmodus rotundus, such as perinatal ossification of the first ethmoturbinal. However, inRousettus, ossification of turbinals is demonstrated as either perichondrial or endochondral. InDesmodus, perichondrial and endochondral ossification of the posterior nasal cupula is observed at birth, a part of the nasal capsule previously shown to persist as cartilage into infancy inRousettus. Combined with prior findings on cranial cartilages we identify several diverse transformational mechanisms by which cartilage as a tissue type may contribute to morphological diversity of the cranium. First, cartilage differentiates in an iterative fashion to increase nasal complexity, but still retains the capacity for later elaboration via de novo bone emanating outward before or after cartilage ossifies. Second, cartilage acts as a driver of growth at growth centers, or via interstitial growth (e.g., septal cartilage). Finally, cartilage as a tissue may influence the timing of ossification and union of the facial and basicranial skeleton. In particular, cartilage at certain points of ontogeny may “model” via selective resorption, showing some similarity to bone.

     
    more » « less
  3. ABSTRACT  
    more » « less
  4. Abstract Long bone growth requires the precise control of chondrocyte maturation from proliferation to hypertrophy during endochondral ossification, but the bioenergetic program that ensures normal cartilage development is still largely elusive. We show that chondrocytes have unique glucose metabolism signatures in these stages, and they undergo bioenergetic reprogramming from glycolysis to oxidative phosphorylation during maturation, accompanied by an upregulation of the pentose phosphate pathway. Inhibition of either oxidative phosphorylation or the pentose phosphate pathway in murine chondrocytes and bone organ cultures impaired hypertrophic differentiation, suggesting that the appropriate balance of these pathways is required for cartilage development. Insulin-like growth factor 2 (IGF2) deficiency resulted in a profound increase in oxidative phosphorylation in hypertrophic chondrocytes, suggesting that IGF2 is required to prevent overactive glucose metabolism and maintain a proper balance of metabolic pathways. Our results thus provide critical evidence of preference for a bioenergetic pathway in different stages of chondrocytes and highlight its importance as a fundamental mechanism in skeletal development. 
    more » « less
  5. Abstract

    Changing the shape of craniofacial bones can profoundly alter ecological function, and understanding how developmental conditions sculpt skeletal phenotypes can provide insight into evolutionary adaptations. Thyroid hormone (TH) stimulates metamorphosis and regulates skeletal morphogenesis across vertebrates. To assess the roles of this hormone in sculpting the craniofacial skeleton of a non‐metamorphic vertebrate, we tested zebrafish for developmental periods of TH‐induced craniofacial shape change. We analyzed shapes of specific bones that function in prey detection, capture and processing. We quantified these elements from late‐larval through adult stages under three developmental TH profiles. Under wild‐type conditions, each bone progressively grows allometrically into a mature morphology over the course of postembryonic development. In three of the four bones, TH was required to sculpt an adult shape: hypothyroidism inhibited aspects of shape change, and allowed some components of immature shape to be retained into adulthood. Excess developmental TH stimulated aspects of precocious shape change leading to abnormal morphologies in some bones. Skeletal features with functional importance showed high sensitivities to TH, including the transformator process of the tripus, the mandibular symphysis of the lower jaw, the scutiform lamina of the hyomandibula, and the anterior arm of the pharyngeal jaw. In all, we found that TH is necessary for shaping mature morphology of several essential skeletal elements; this requirement is particularly pronounced during larval development. Altered TH titer leads to abnormal morphologies with likely functional consequences, highlighting the potential of TH and downstream pathways as targets for evolutionary change.

     
    more » « less