skip to main content


Title: Anomaly Detection with Multiple Reference Datasets in High Energy Physics
An important class of techniques for resonant anomaly detection in high energy physics builds models that can distinguish between reference and target datasets, where only the latter has appreciable signal. Such techniques, including Classification Without Labels (CWOLA) and Simulation Assisted Likelihood-free Anomaly Detection (SALAD) rely on a single reference dataset. They cannot take advantage of commonly-available multiple datasets and thus cannot fully exploit available information. In this work, we propose generalizations of CWOLA and SALAD for settings where multiple reference datasets are available, building on weak supervision techniques. We demonstrate improved performance in a number of settings with real and synthetic data. As an added benefit, our generalizations enable us to provide finite-sample guarantees, improving on existing asymptotic analyses.  more » « less
Award ID(s):
2106707
NSF-PAR ID:
10427110
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
NeurIPS Workshop on Machine Learning and the Physical Sciences (ML4PS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  2. Abstract

    Anomaly detection methods have a great potential to assist the detection of diseases in animal production systems. We used sequence data of Porcine Reproductive and Respiratory Syndrome (PRRS) to define the emergence of new strains at the farm level. We evaluated the performance of 24 anomaly detection methods based on machine learning, regression, time series techniques and control charts to identify outbreaks in time series of new strains and compared the best methods using different time series: PCR positives, PCR requests and laboratory requests. We introduced synthetic outbreaks of different size and calculated the probability of detection of outbreaks (POD), sensitivity (Se), probability of detection of outbreaks in the first week of appearance (POD1w) and background alarm rate (BAR). The use of time series of new strains from sequence data outperformed the other types of data but POD, Se, POD1w were only high when outbreaks were large. The methods based on Long Short-Term Memory (LSTM) and Bayesian approaches presented the best performance. Using anomaly detection methods with sequence data may help to identify the emergency of cases in multiple farms, but more work is required to improve the detection with time series of high variability. Our results suggest a promising application of sequence data for early detection of diseases at a production system level. This may provide a simple way to extract additional value from routine laboratory analysis. Next steps should include validation of this approach in different settings and with different diseases.

     
    more » « less
  3. null (Ed.)
    Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution inputs (OODs). This limitation is one of the key challenges in the adoption of DNNs in high-assurance systems such as autonomous driving, air traffic management, and medical diagnosis. This challenge has received significant attention recently, and several techniques have been developed to detect inputs where the model’s prediction cannot be trusted. These techniques detect OODs as datapoints with either high epistemic uncertainty or high aleatoric uncertainty. We demonstrate the difference in the detection ability of these techniques and propose an ensemble approach for detection of OODs as datapoints with high uncertainty (epistemic or aleatoric). We perform experiments on vision datasets with multiple DNN architectures, achieving state-of-the-art results in most cases. 
    more » « less
  4. null (Ed.)
    Multiple Instance Learning (MIL) provides a promising solution to many real-world problems, where labels are only available at the bag level but missing for instances due to a high labeling cost. As a powerful Bayesian non-parametric model, Gaussian Processes (GP) have been extended from classical supervised learning to MIL settings, aiming to identify the most likely positive (or least negative) instance from a positive (or negative) bag using only the bag-level labels. However, solely focusing on a single instance in a bag makes the model less robust to outliers or multi-modal scenarios, where a single bag contains a diverse set of positive instances. We propose a general GP mixture framework that simultaneously considers multiple instances through a latent mixture model. By adding a top-k constraint, the framework is equivalent to choosing the top-k most positive instances, making it more robust to outliers and multimodal scenarios. We further introduce a Distributionally Robust Optimization (DRO) constraint that removes the limitation of specifying a fixed k value. To ensure the prediction power over high-dimensional data (e.g., videos and images) that are common in MIL, we augment the GP kernel with  fixed basis functions by using a deep neural network to learn adaptive basis functions so that the covariance structure of high-dimensional data can be accurately captured. Experiments are conducted on highly challenging real-world video anomaly detection tasks to demonstrate the effectiveness of the proposed model. 
    more » « less
  5. Multiple Instance Learning (MIL) provides a promising solution to many real-world problems, where labels are only available at the bag level but missing for instances due to a high labeling cost. As a powerful Bayesian non-parametric model, Gaussian Processes (GP) have been extended from classical supervised learning to MIL settings, aiming to identify the most likely positive (or least negative) instance from a positive (or negative) bag using only the bag-level labels. However, solely focusing on a single instance in a bag makes the model less robust to outliers or multi-modal scenarios, where a single bag contains a diverse set of positive instances. We propose a general GP mixture framework that simultaneously considers multiple instances through a latent mixture model. By adding a top-k constraint, the framework is equivalent to choosing the top-k most positive instances, making it more robust to outliers and multimodal scenarios. We further introduce a Distributionally Robust Optimization (DRO) constraint that removes the limitation of specifying a fix k value. To ensure the prediction power over high-dimensional data (eg, videos and images) that are common in MIL, we augment the GP kernel with fixed basis functions by using a deep neural network to learn adaptive basis functions so that the covariance structure of high-dimensional data can be accurately captured. Experiments are conducted on highly challenging real-world video anomaly detection tasks to demonstrate the effectiveness of the proposed model. 
    more » « less