skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: What Makes ImageNet Look Unlike LAION
ImageNet was famously created from Flickr image search results. What if we recreated ImageNet instead by searching the massive LAION dataset based on image captions alone? In this work, we carry out this counterfactual investigation. We find that the resulting ImageNet recreation, which we call LAIONet, looks distinctly unlike the original. Specifically, the intra-class similarity of images in the original ImageNet is dramatically higher than it is for LAIONet. Consequently, models trained on ImageNet perform significantly worse on LAIONet. We propose a rigorous explanation for the discrepancy in terms of a subtle, yet important, difference in two plausible causal data-generating processes for the respective datasets, that we support with systematic experimentation. In a nutshell, searching based on an image caption alone creates an information bottleneck that mitigates the selection bias otherwise present in image-based filtering. Our explanation formalizes a long-held intuition in the community that ImageNet images are stereotypical, unnatural, and overly simple representations of the class category. At the same time, it provides a simple and actionable takeaway for future dataset creation efforts.  more » « less
Award ID(s):
1750555
PAR ID:
10427136
Author(s) / Creator(s):
;
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional Deep Neural Network (DNN) security is mostly related to the well-known adversarial input example attack.Recently, another dimension of adversarial attack, namely, attack on DNN weight parameters, has been shown to be very powerful. Asa representative one, the Bit-Flip based adversarial weight Attack (BFA) injects an extremely small amount of faults into weight parameters to hijack the executing DNN function. Prior works of BFA focus on un-targeted attacks that can hack all inputs into a random output class by flipping a very small number of weight bits stored in computer memory. This paper proposes the first work oftargetedBFA based (T-BFA) adversarial weight attack on DNNs, which can intentionally mislead selected inputs to a target output class. The objective is achieved by identifying the weight bits that are highly associated with classification of a targeted output through a class-dependent weight bit searching algorithm. Our proposed T-BFA performance is successfully demonstrated on multiple DNN architectures for image classification tasks. For example, by merely flipping 27 out of 88 million weight bits of ResNet-18, our T-BFA can misclassify all the images from Hen class into Goose class (i.e., 100% attack success rate) in ImageNet dataset, while maintaining 59.35% validation accuracy. 
    more » « less
  2. null (Ed.)
    Adversarial training is a popular defense strategy against attack threat models with bounded Lp norms. However, it often degrades the model performance on normal images and the defense does not generalize well to novel attacks. Given the success of deep generative models such as GANs and VAEs in characterizing the underlying manifold of images, we investigate whether or not the aforementioned problems can be remedied by exploiting the underlying manifold information. To this end, we construct an "On-Manifold ImageNet" (OM-ImageNet) dataset by projecting the ImageNet samples onto the manifold learned by StyleGSN. For this dataset, the underlying manifold information is exact. Using OM-ImageNet, we first show that adversarial training in the latent space of images improves both standard accuracy and robustness to on-manifold attacks. However, since no out-of-manifold perturbations are realized, the defense can be broken by Lp adversarial attacks. We further propose Dual Manifold Adversarial Training (DMAT) where adversarial perturbations in both latent and image spaces are used in robustifying the model. Our DMAT improves performance on normal images, and achieves comparable robustness to the standard adversarial training against Lp attacks. In addition, we observe that models defended by DMAT achieve improved robustness against novel attacks which manipulate images by global color shifts or various types of image filtering. Interestingly, similar improvements are also achieved when the defended models are tested on out-of-manifold natural images. These results demonstrate the potential benefits of using manifold information in enhancing robustness of deep learning models against various types of novel adversarial attacks. 
    more » « less
  3. In this article, we study a recently proposed method for improving empirical security of steganography in JPEG images in which the sender starts with an additive embedding scheme with symmetrical costs of ±1 changes and then decreases the cost of one of these changes based on an image obtained by applying a deblocking (JPEG dequantization) algorithm to the cover JPEG. This approach provides rather significant gains in security at negligible embedding complexity overhead for a wide range of quality factors and across various embedding schemes. Challenging the original explanation of the inventors of this idea, which is based on interpreting the dequantized image as an estimate of the precover (uncompressed) image, we provide alternative arguments. The key observation and the main reason why this approach works is how the polarizations of individual DCT coefficients work together. By using a MiPOD model of content complexity of the uncompressed cover image, we show that the cost polarization technique decreases the chances of “bad” combinations of embedding changes that would likely be introduced by the original scheme with symmetric costs. This statement is quantified by computing the likelihood of the stego image w.r.t. the multivariate Gaussian precover distribution in DCT domain. Furthermore, it is shown that the cost polarization decreases spatial discontinuities between blocks (blockiness) in the stego image and enforces desirable correlations of embedding changes across blocks. To further prove the point, it is shown that in a source that adheres to the precover model, a simple Wiener filter can serve equally well as a deep-learning based deblocker. 
    more » « less
  4. null (Ed.)

    We present a new method to improve the representational power of the features in Convolutional Neural Networks (CNNs). By studying traditional image processing methods and recent CNN architectures, we propose to use positional information in CNNs for effective exploration of feature dependencies. Rather than considering feature semantics alone, we incorporate spatial positions as an augmentation for feature semantics in our design. From this vantage, we present a Position-Aware Recalibration Module (PRM in short) which recalibrates features leveraging both feature semantics and position. Furthermore, inspired by multi-head attention, our module is capable of performing multiple recalibrations where results are concatenated as the output. As PRM is efficient and easy to implement, it can be seamlessly integrated into various base networks and applied to many position-aware visual tasks. Compared to original CNNs, our PRM introduces a negligible number of parameters and FLOPs, while yielding better performance. Experimental results on ImageNet and MS COCO benchmarks show that our approach surpasses related methods by a clear margin with less computational overhead. For example, we improve the ResNet50 by absolute 1.75% (77.65% vs. 75.90%) on ImageNet 2012 validation dataset, and 1.5%~1.9% mAP on MS COCO validation dataset with almost no computational overhead. Codes are made publicly available.

     
    more » « less
  5. The advent of large pre-trained models has brought about a paradigm shift in both visual representation learning and natural language processing. However, clustering unlabeled images, as a fundamental and classic machine learning problem, still lacks an effective solution, particularly for large-scale datasets. In this paper, we propose a novel image clustering pipeline that leverages the powerful feature representation of large pre-trained models such as CLIP and cluster images effectively and efficiently at scale. We first developed a novel algorithm to estimate the number of clusters in a given dataset. We then show that the pre-trained features are significantly more structured by further optimizing the rate reduction objective. The resulting features may significantly improve the clustering accuracy, e.g., from 57\% to 66\% on ImageNet-1k. Furthermore, by leveraging CLIP's multimodality bridge between image and text, we develop a simple yet effective self-labeling algorithm that produces meaningful captions for the clusters. Through extensive experiments, we show that our pipeline works well on standard datasets such as CIFAR-10, CIFAR-100, and ImageNet-1k. It also extends to datasets that are not curated for clustering, such as LAION-Aesthetics and WikiArts. We released the code in https://github.com/LeslieTrue/CPP 
    more » « less