skip to main content


Title: Beaks promote rapid morphological diversification along distinct evolutionary trajectories in labrid fishes (Eupercaria: Labridae)
Abstract

The upper and lower jaws of some wrasses (Eupercaria: Labridae) possess teeth that have been coalesced into a strong durable beak that they use to graze on hard coral skeletons, hard-shelled prey, and algae, allowing many of these species to function as important ecosystem engineers in their respective marine habitats. While the ecological impact of the beak is well understood, questions remain about its evolutionary history and the effects of this innovation on the downstream patterns of morphological evolution. Here we analyze 3D cranial shape data in a phylogenetic comparative framework and use paleoclimate modeling to reconstruct the evolution of the labrid beak across 205 species. We find that wrasses evolved beaks three times independently, once within odacines and twice within parrotfishes in the Pacific and Atlantic Oceans. We find an increase in the rate of shape evolution in the Scarus+Chlorurus+Hipposcarus (SCH) clade of parrotfishes likely driven by the evolution of the intramandibular joint. Paleoclimate modeling shows that the SCH clade of parrotfishes rapidly morphologically diversified during the middle Miocene. We hypothesize that possession of a beak in the SCH clade coupled with favorable environmental conditions allowed these species to rapidly morphologically diversify.

 
more » « less
Award ID(s):
1701665 2237278
NSF-PAR ID:
10427222
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
ISSN:
0014-3820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coral reefs are complex marine habitats that have been hypothesized to facilitate functional specialization and increased rates of functional and morphological evolution. Wrasses (Labridae: Percomorpha) in particular, have diversified extensively in these coral reef environments and have evolved adaptations to further exploit reef-specific resources. Prior studies have found that reef-dwelling wrasses exhibit higher rates of functional evolution, leading to higher functional variation than in non-reef dwelling wrasses. Here, we examine this hypothesis in the lower pharyngeal tooth plate of 134 species of reef and non-reef-associated labrid fishes using high-resolution morphological data in the form of micro-computed tomography scans and employing three-dimensional geometric morphometrics to quantify shape differences. We find that reef-dwelling wrasses do not differ from non-reef-associated wrasses in morphological disparity or rates of shape evolution. However, we find that some reef-associated species (e.g., parrotfishes and tubelips) exhibit elevated rates of pharyngeal jaw shape evolution and have colonized unique regions of morphospace. These results suggest that while coral reef association may provide the opportunity for specialization and morphological diversification, species must still be able to capitalize on the ecological opportunities to invade novel niche space, and that these novel invasions may prompt rapid rates of morphological evolution in the associated traits that allow them to capitalize on new resources. 
    more » « less
  2. Abstract

    Deciphering the genetic basis of vertebrate craniofacial variation is a longstanding biological problem with broad implications in evolution, development, and human pathology. One of the most stunning examples of craniofacial diversification is the adaptive radiation of birds, in which the beak serves essential roles in virtually every aspect of their life histories. The domestic pigeon (Columba livia) provides an exceptional opportunity to study the genetic underpinnings of craniofacial variation because of its unique balance of experimental accessibility and extraordinary phenotypic diversity within a single species. We used traditional and geometric morphometrics to quantify craniofacial variation in an F2laboratory cross derived from the straight‐beaked Pomeranian Pouter and curved‐beak Scandaroon pigeon breeds. Using a combination of genome‐wide quantitative trait locus scans and multi‐locus modeling, we identified a set of genetic loci associated with complex shape variation in the craniofacial skeleton, including beak shape, braincase shape, and mandible shape. Some of these loci control coordinated changes between different structures, while others explain variation in the size and shape of specific skull and jaw regions. We find that in domestic pigeons, a complex blend of both independent and coupled genetic effects underlie three‐dimensional craniofacial morphology.

     
    more » « less
  3. Synopsis

    The concept of modularity is fundamental to understanding the evolvability of morphological structures and is considered a central framework for the exploration of functionally and developmentally related subsets of anatomical traits. In this study, we explored evolutionary patterns of modularity and integration in the 4-bar linkage biomechanical system of the skull in the fish family Labridae (wrasses and parrotfishes). We measured evolutionary modularity and rates of shape diversification of the skull partitions of three biomechanical 4-bar linkage systems using 205 species of wrasses (family: Labridae) and a three-dimensional geometric morphometrics data set of 200 coordinates. We found support for a two-module hypothesis on the family level that identifies the bones associated with the three linkages as being a module independent from a module formed by the remainder of the skull (neurocranium, nasals, premaxilla, and pharyngeal jaws). We tested the patterns of skull modularity for four tribes in wrasses: hypsigenyines, julidines, cheilines, and scarines. The hypsigenyine and julidine groups showed the same two-module hypothesis for Labridae, whereas cheilines supported a four-module hypothesis with the three linkages as independent modules relative to the remainder of the skull. Scarines showed increased modularization of skull elements, where each bone is its own module. Diversification rates of modules show that linkage modules have evolved at a faster net rate of shape change than the remainder of the skull, with cheilines and scarines exhibiting the highest rate of evolutionary shape change. We developed a metric of linkage planarity and found the oral jaw linkage system to exhibit high planarity, while the rest position of the hyoid linkage system exhibited increased three dimensionality. This study shows a strong link between phenotypic evolution and biomechanical systems, with modularity influencing rates of shape change in the evolution of the wrasse skull.

     
    more » « less
  4. Synopsis

    By linking anatomical structure to mechanical performance we can improve our understanding of how selection shapes morphology. Here we examined the functional morphology of feeding in fishes of the subfamily Danioninae (order Cypriniformes) to determine aspects of cranial evolution connected with their trophic diversification. The Danioninae comprise three major lineages and each employs a different feeding strategy. We gathered data on skull form and function from species in each clade, then assessed their evolutionary dynamics using phylogenetic-comparative methods. Differences between clades are strongly associated with differences in jaw protrusion. The paedomorphic Danionella clade does not use jaw protrusion at all, members of the Danio clade use jaw protrusion for suction production and prey capture, and members of the sister clade to Danio (e.g., Devario and Microdevario) use jaw protrusion to retain prey after capture. The shape of the premaxillary bone is a major determinant of protrusion ability, and premaxilla morphology in each of these lineages is consistent with their protrusion strategies. Premaxilla shapes have evolved rapidly, which indicates that they have been subjected to strong selection. We compared premaxilla development in giant danio (Devario aequipinnatus) and zebrafish (Danio rerio) and discuss a developmental mechanism that could shift danionine fishes between the feeding strategies employed by these species and their respective clades. We also identified a highly integrated evolutionary module that has been an important factor in the evolution of trophic mechanics within the Danioninae.

     
    more » « less
  5. Significance

    Understanding how development and evolution shape functional morphology is a basic question in biology. A paradigm of this is the finch’s beak that has adapted to different diets and behaviors over millions of years. We take a mathematical and physical perspective to quantify the nature of beak shape variations, how they emerge from changes to the development program of the birds, and their functional significance as a mechanical tool.

     
    more » « less