skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Systematic assessment of adsorption-coupled electron transfer toward voltammetric discrimination between concerted and non-concerted mechanisms
Award ID(s):
1904258
PAR ID:
10427335
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Electrochimica Acta
Volume:
428
Issue:
C
ISSN:
0013-4686
Page Range / eLocation ID:
140912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Plant immunity activation often results in suppression of plant growth, particularly in the case of constitutive immune activation. We discovered that signaling of the phytohormone cytokinin (CK), known to regulate plant growth through the control of cell division and shoot apical meristem (SAM) activity, can be suppressed by negative crosstalk with the defense phytohormones jasmonic acid (JA), and most evidently, salicylic acid (SA). We show that changing the negative crosstalk of SA on CK signaling in autoimmunity mutants by targeted increase of endogenous CK levels results in plants resistant to pathogens from diverse lifestyles, and relieves suppression of reproductive growth. Moreover, such changes in crosstalk result in a novel reproductive growth phenotype, suggesting a role for defense phytohormones in the SAM, likely through regulation of nitrogen response and cellular redox status. Our data suggest that targeted phytohormone crosstalk engineering can be used to achieve increased reproductive growth and pathogen resistance. SIGNIFICANCE STATEMENTPlants constantly integrate environmental stimuli with developmental programs to optimize their growth and fitness. Excessive activation of the plant immune system often leads to decreased plant growth, a process known as the growth-defense tradeoff. Here, we adapted phytohormone levels in Arabidopsis reproductive tissues of autoimmunity mutants to change phytohormonal crosstalk and diminish the growth tradeoff, resulting in increased broad resistance to pathogens and decreased growth suppression. Similar approaches to phytohormone crosstalk engineering could be used in different contexts to achieve outcomes of higher plant stress resilience and yield. 
    more » « less
  2. The enzymes manganese superoxide dismutase and manganese lipoxygenase use Mn III –hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C–H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn–oxo motifs in attacking substrate C–H bonds, presumably by a concerted proton–electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn–hydroxo and Mn–oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of Mn III –hydroxo and Mn IV –oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around Mn III –hydroxo and Mn IV –oxo motifs permit elucidation of structure–activity relationships. For Mn III –hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the Mn III/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the p K a of the Mn II –aqua product, which represents the proton-transfer component for CPET. For Mn IV –oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the Mn IV –oxo unit results in large rate enhancements for C–H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of Mn III –hydroxo and Mn IV –oxo adducts. 
    more » « less