skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Developers' Understanding of Regex Denial of Service Tools through Anti-Patterns and Fix Strategies
Regular expressions are used for diverse purposes, including input validation and firewalls. Unfortunately, they can also lead to a security vulnerability called ReDoS (Regular Expression Denial of Service), caused by a super-linear worst-case execution time during regex matching. Due to the severity and prevalence of ReDoS, past work proposed automatic tools to detect and fix regexes. Although these tools were evaluated in automatic experiments, their usability has not yet been studied; usability has not been a focus of prior work. Our insight is that the usability of existing tools to detect and fix regexes will improve if we complement them with anti-patterns and fix strategies of vulnerable regexes. We developed novel anti-patterns for vulnerable regexes, and a collection of fix strategies to fix them. We derived our anti-patterns and fix strategies from a novel theory of regex infinite ambiguity — a necessary condition for regexes vulnerable to ReDoS. We proved the soundness and completeness of our theory. We evaluated the effectiveness of our anti-patterns, both in an automatic experiment and when applied manually. Then, we evaluated how much our anti-patterns and fix strategies improve developers’ understanding of the outcome of detection and fixing tools. Our evaluation found that our anti-patterns were effective over a large dataset of regexes (N=209,188): 100% precision and 99% recall, improving the state of the art 50% precision and 87% recall. Our anti-patterns were also more effective than the state of the art when applied manually (N=20): 100% developers applied them effectively vs. 50% for the state of the art. Finally, our anti-patterns and fix strategies increased developers’ understanding using automatic tools (N=9): from median “Very weakly” to median “Strongly” when detecting vulnerabilities, and from median “Very weakly” to median “Very strongly” when fixing them.  more » « less
Award ID(s):
2135156
PAR ID:
10427477
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE security privacy
ISSN:
1540-7993
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significant interest in applying Deep Neural Network (DNN) has fueled the need to support engineering of software that uses DNNs. Repairing software that uses DNNs is one such unmistakable SE need where automated tools could be very helpful; however, we do not fully understand challenges to repairing and patterns that are utilized when manually repairing them. What challenges should automated repair tools address? What are the repair patterns whose automation could help developers? Which repair patterns should be assigned a higher priority for automation? This work presents a comprehensive study of bug fix patterns to address these questions. We have studied 415 repairs from Stack Overflow and 555 repairs from GitHub for five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand challenges in repairs and bug repair patterns. Our key findings reveal that DNN bug fix patterns are distinctive compared to traditional bug fix patterns; the most common bug fix patterns are fixing data dimension and neural network connectivity; DNN bug fixes have the potential to introduce adversarial vulnerabilities; DNN bug fixes frequently introduce new bugs; and DNN bug localization, reuse of trained model, and coping with frequent releases are major challenges faced by developers when fixing bugs. We also contribute a benchmark of 667 DNN (bug, repair) instances. 
    more » « less
  2. The emergence of database-as-a-service platforms has made deploying database applications easier than before. Now, developers can quickly create scalable applications. However, designing performant, maintainable, and accurate applications is challenging. Developers may unknowingly introduce anti-patterns in the application's SQL statements. These anti-patterns are design decisions that are intended to solve a problem, but often lead to other problems by violating fundamental design principles. In this paper, we present SQLCheck, a holistic toolchain for automatically finding and fixing anti-patterns in database applications. We introduce techniques for automatically (1) detecting anti-patterns with high precision and recall, (2) ranking the anti-patterns based on their impact on performance, maintainability, and accuracy of applications, and (3) suggesting alternative queries and changes to the database design to fix these anti-patterns. We demonstrate the prevalence of these anti-patterns in a large collection of queries and databases collected from open-source repositories. We introduce an anti-pattern detection algorithm that augments query analysis with data analysis. We present a ranking model for characterizing the impact of frequently occurring anti-patterns. We discuss how SQLCheck suggests fixes for high-impact anti-patterns using rule-based query refactoring techniques. Our experiments demonstrate that SQLCheck enables developers to create more performant, maintainable, and accurate applications. 
    more » « less
  3. Existing datasets for regular expression (regex) generation from natural language are limited in complexity; compared to regex tasks that users post on StackOverflow, the regexes in these datasets are simple, and the language used to describe them is not diverse. We introduce StructuredRegex, a new regex synthesis dataset differing from prior ones in three aspects. First, to obtain structurally complex and realistic regexes, we generate the regexes using a probabilistic grammar with pre-defined macros observed from real-world StackOverflow posts. Second, to obtain linguistically diverse natural language descriptions, we show crowdworkers abstract depictions of the underlying regex and ask them to describe the pattern they see, rather than having them paraphrase synthetic language. Third, we augment each regex example with a collection of strings that are and are not matched by the ground truth regex, similar to how real users give examples. Our quantitative and qualitative analysis demonstrates the advantages of StructuredRegex over prior datasets. Further experimental results using various multimodal synthesis techniques highlight the challenge presented by our dataset, including non-local constraints and multi-modal inputs. 
    more » « less
  4. We will demonstrate a prototype of sqlcheck, a holistic toolchain for automatically finding and fixing anti-patterns in database appli- cations. The advent of modern database-as-a-service platforms has made it easy for developers to quickly create scalable applications. However, it is still challenging for developers to design performant, maintainable, and accurate applications. This is because develop- ers may unknowingly introduce anti-patterns in the application’s SQL statements. These anti-patterns are design decisions that are intended to solve a problem, but often lead to other problems by violating fundamental design principles. sqlcheck leverages techniques for automatically: (1) detecting anti-patterns with high accuracy, (2) ranking them based on their impact on performance, maintainability, and accuracy of applica- tions, and (3) suggesting alternative queries and changes to the database design to fix these anti-patterns. We will demonstrate that sqlcheck enables developers to create more performant, maintain- able, and accurate applications. We will show the prevalence of these anti-patterns in a large collection of queries and databases collected from open-source repositories. 
    more » « less
  5. Regular Expression Denial of Service (ReDoS) is a vulnerability class that has become prominent in recent years. Attackers can weaponize such weaknesses as part of asymmetric cyberattacks that exploit the slow worst-case matching time of regular expres- sion (regex) engines. In the past, problematic regular expressions have led to outages at Cloudflare and Stack Overflow, showing the severity of the problem. While ReDoS has drawn significant research attention, there has been no systematization of knowledge to delineate the state of the art and identify opportunities for fur- ther research. In this paper, we describe the existing knowledge on ReDoS. We first provide a systematic literature review, discussing approaches for detecting, preventing, and mitigating ReDoS vul- nerabilities. Then, our engineering review surveys the latest regex engines to examine whether and how ReDoS defenses have been re- alized. Combining our findings, we observe that (1) in the literature, almost no studies evaluate whether and how ReDoS vulnerabilities can be weaponized against real systems, making it difficult to assess their real-world impact; and (2) from an engineering view, many mainstream regex engines now have ReDoS defenses, rendering many threat models obsolete. We conclude with an extensive dis- cussion, highlighting avenues for future work. The open challenges in ReDoS research are to evaluate emerging defenses and support engineers in migrating to defended engines. We also highlight the parallel between performance bugs and asymmetric DoS, and we argue that future work should capitalize more on this similarity and adopt a more systematic view on ReDoS-like vulnerabilities. 
    more » « less