Abstract Realistic computational simulations in different oceanic basins reveal prevalent prograde mean flows (in the direction of topographic Rossby wave propagation along isobaths; aka topostrophy) on topographic slopes in the deep ocean, consistent with the barotropic theory of eddy-driven mean flows. Attention is focused on the western Mediterranean Sea with strong currents and steep topography. These prograde mean currents induce an opposing bottom drag stress and thus a turbulent boundary layer mean flow in the downhill direction, evidenced by a near-bottom negative mean vertical velocity. The slope-normal profile of diapycnal buoyancy mixing results in downslope mean advection near the bottom (a tendency to locally increase the mean buoyancy) and upslope buoyancy mixing (a tendency to decrease buoyancy) with associated buoyancy fluxes across the mean isopycnal surfaces (diapycnal downwelling). In the upper part of the boundary layer and nearby interior, the diapycnal turbulent buoyancy flux divergence reverses sign (diapycnal upwelling), with upward Eulerian mean buoyancy advection across isopycnal surfaces. These near-slope tendencies abate with further distance from the boundary. An along-isobath mean momentum balance shows an advective acceleration and a bottom-drag retardation of the prograde flow. The eddy buoyancy advection is significant near the slope, and the associated eddy potential energy conversion is negative, consistent with mean vertical shear flow generation for the eddies. This cross-isobath flow structure differs from previous proposals, and a new one-dimensional model is constructed for a topostrophic, stratified, slope bottom boundary layer. The broader issue of the return pathways of the global thermohaline circulation remains open, but the abyssal slope region is likely to play a dominant role.
more »
« less
Heat transport across the Antarctic Slope Front controlled by cross-slope salinity gradients
High-resolution process modeling reveals a positive feedback of poleward ocean heat transport due to Antarctic ice shelf melt.
more »
« less
- PAR ID:
- 10427593
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 18
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent measurements and modeling indicate that roughly half of the Pacific-origin water exiting the Chukchi Sea shelf through Barrow Canyon forms a westward-flowing current known as the Chukchi Slope Current (CSC), yet the trajectory and fate of this current is presently unknown. In this study, through the combined use of shipboard velocity data and information from five profiling floats deployed as quasi-Lagrangian particles, we delve further into the trajectory and the fate of the CSC. During the period of observation, from early September to early October 2018, the CSC progressed far to the north into the Chukchi Borderland. The northward excursion is believed to result from the current negotiating Hanna Canyon on the Chukchi slope, consistent with potential vorticity dynamics. The volume transport of the CSC, calculated using a set of shipboard transects, decreased from approximately 2 Sv (1 Sv ≡ 106m3s−1) to near zero over a period of 4 days. This variation can be explained by a concomitant change in the wind stress curl over the Chukchi shelf from positive to negative. After turning northward, the CSC was disrupted and four of the five floats veered offshore, with one of the floats permanently leaving the current. It is hypothesized that the observed disruption was due to an anticyclonic eddy interacting with the CSC, which has been observed previously. These results demonstrate that, at times, the CSC can get entrained into the Beaufort Gyre.more » « less
-
Abstract Observations have revealed the existence of persistent slope countercurrents (SCCs) that flow southwestward beneath the Kuroshio Current at several locations over the East China Sea (ECS) continental slope. It was not clear whether these flows are localized circulation features or segments of a trough‐scale circulation system in the Okinawa Trough (OT). We demonstrate that there indeed exists a potentially continuous trough‐scale SCC along the ECS slope that is associated with an OT‐wide cyclonic circulation using high‐resolution model simulations and physical interpretations. The detailed features of the deep OT circulation are illustrated by the trajectories of the Lagrangian drifters and the time‐varying distributions of passive tracers. The SCC in the ECS is characterized by its weak yet persistent nature, typically located in narrow sloping regions at the isopycnal layer of 26.6–27.3 kg m−3. It exhibits a characteristic speed of approximately O‐(1) cm s−1. Analyses and experiments suggest that the divergence of upwelling in the SCC layer (26.6–27.3 σθsurface) gives rise to lateral potential vorticity transport, ultimately driving the deep cyclonic circulation. Furthermore, the SCC also displays a substantial connection with the onshore intrusion of the Kuroshio Current, particularly to the northeast of Taiwan Island. The SCC may potentially play a crucial role in the transport of heat and nutrients, as well as in regulating sediment distributions within the deep OT. This mechanism offers fresh insights into explaining the presence of undercurrents in semi‐enclosed marginal seas.more » « less
-
Soil piping (concentrated leak erosion) is a major contributor to soil erosion in many parts of the world, and collapse of eroded pipes can result in the formation of gullies and sinkholes or trigger slope instability. Despite these significant impacts, there is little understanding of factors controlling pipe collapse, and how water within the pipe influences moisture levels within a slope. In this study, physical models were employed on unsaturated model slopes with pre-formed macropores to investigate how soil properties, pipe characteristics, and hydraulic conditions govern internal erosion processes and slope stability. Experiments simulated shallow field conditions (0.45 m overburden) using 4 mm and 12 mm pipes to establish preferential flow paths, while varying model parameters including initial compaction moisture content and density, pipe condition (absent, closed, or open), slope angle, and model width. Volumetric water content sensors monitored moisture evolution, while cameras captured slope responses to subsurface flow. Results demonstrate that initial compaction conditions (water content and density), pipe size, hydraulic connectivity, and pipe condition control internal erosion processes and slope stability.more » « less
An official website of the United States government

