skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smart Agent System for Cyber Nano-Manufacturing in Industry 4.0
The development of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) has influenced Cyber-Physical Manufacturing Systems (CPMS). Collaborative manufacturing among organizations with geographically distributed operations using Nanomanufacturing (NM) requires integrated networking for enhanced productivity. The present research provides a unique cyber nanomanufacturing framework by combining digital design with various artificial neural networks (ANN) approaches to predict the optimal nano/micro-manufacturing process. It enables the visualization tool for real-time allocation of nano/micro-manufacturing resources to simulate machine availability for five types of NM processes in real-time for a dynamic machine identification system. This research establishes a foundation for a smart agent system with predictive capabilities for cyber nanomanufacturing in real-time.  more » « less
Award ID(s):
2100850
PAR ID:
10427639
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
12
ISSN:
2076-3417
Page Range / eLocation ID:
6143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern embedded and cyber-physical systems are ubiquitous. Many critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality require real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However, RT-IoT are also increasingly becoming targets for cyber-attacks, which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT-IoT frameworks. 
    more » « less
  2. Abstract High-throughput and cost-efficient fabrication of intricate nanopatterns using top-down approaches remains a significant challenge. To overcome this limitation, advancements are required across various domains: patterning techniques, real-time and post-process metrology, data analysis, and, crucially, process control. We review recent progress in continuous, top-down nanomanufacturing, with a particular focus on data-driven process control strategies. We explore existing Machine Learning (ML)-based approaches for implementing key aspects of continuous process control, encompassing high-speed metrology balancing speed and resolution, modeling relationships between process parameters and yield, multimodal data fusion for comprehensive process monitoring, and control law development for real-time process adjustments. To assess the applicability of established control strategies in continuous settings, we compare roll-to-roll (R2R) manufacturing, a paradigmatic continuous multistage process, with the well-established batch-based semiconductor manufacturing. Finally, we outline promising future research directions for achieving high-quality, cost-effective, top-down nanomanufacturing and particularly R2R nanomanufacturing at scale. 
    more » « less
  3. Abstract The advancement of sensing technology enables efficient data collection from manufacturing systems for monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However, the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well. 
    more » « less
  4. Nanomanufacturing and digital manufacturing (DM) are defining the forefront of the fourth industrial revolution—Industry 4.0—as enabling technologies for the processing of materials spanning several length scales. This review delineates the evolution of nanomaterials and nanomanufacturing in the digital age for applications in medicine, robotics, sensory technology, semiconductors, and consumer electronics. The incorporation of artificial intelligence (AI) tools to explore nanomaterial synthesis, optimize nanomanufacturing processes, and aid high-fidelity nanoscale characterization is discussed. This paper elaborates on different machine-learning and deep-learning algorithms for analyzing nanoscale images, designing nanomaterials, and nano quality assurance. The challenges associated with the application of machine- and deep-learning models to achieve robust and accurate predictions are outlined. The prospects of incorporating sophisticated AI algorithms such as reinforced learning, explainable artificial intelligence (XAI), big data analytics for material synthesis, manufacturing process innovation, and nanosystem integration are discussed. 
    more » « less
  5. Abstract Cyber-enabled manufacturing systems are becoming increasingly data-rich, generating vast amounts of real-time sensor data for quality control and process optimization. However, this proliferation of data also exposes these systems to significant cyber-physical security threats. For instance, malicious attackers may delete, change, or replace original data, leading to defective products, damaged equipment, or operational safety hazards. False data injection attacks can compromise machine learning models, resulting in erroneous predictions and decisions. To mitigate these risks, it is crucial to employ robust data processing techniques that can adapt to varying process conditions and detect anomalies in real-time. In this context, the incremental machine learning (IML) approaches can be valuable, allowing models to be updated incrementally with newly collected data without retraining from scratch. Moreover, although recent studies have demonstrated the potential of blockchain in enhancing data security within manufacturing systems, most existing security frameworks are primarily based on cryptography, which does not sufficiently address data quality issues. Thus, this study proposes a gatekeeper mechanism to integrate IML with blockchain and discusses how this integration could potentially increase the data integrity of cyber-enabled manufacturing systems. The proposed IML-integrated blockchain can address the data security concerns from both intentional alterations (e.g., malicious tampering) and unintentional alterations (e.g., process anomalies and outliers). The real-world case study results show that the proposed gatekeeper integration algorithm can successfully filter out over 80% of malicious data entries while maintaining comparable classification performance to standard IML models. Furthermore, the integration of blockchain enables effective detection of tampering attempts, ensuring the trustworthiness of the stored information. 
    more » « less