skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Circumgalactic Medium of Extreme Emission Line Galaxies at z ~ 2: Resolved Spectroscopy and Radiative Transfer Modeling of Spatially Extended Lyman-alpha Emission in the KBSS-KCWI Survey
Award ID(s):
2009313
PAR ID:
10427783
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Astrophysical journal
ISSN:
1538-4357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The electromagnetic emission from the nonrelativistic ejecta launched in neutron star mergers (either dynamically or through a disk wind) has the potential to probe both the total mass and composition of this ejecta. These observations are crucial in understanding the role of these mergers in the production ofr-process elements in the Universe. However, many properties of the ejecta can alter the light curves and we must both identify which properties play a role in shaping this emission and understand the effects these properties have on the emission before we can use observations to place strong constraints on the amount ofr-process elements produced in the merger. This paper focuses on understanding the effect of the velocity distribution (amount of mass moving at different velocities) for lanthanide-rich ejecta on the light curves and spectra. The simulations use distributions guided by recent calculations of disk outflows and compare the velocity-distribution effects to those of ejecta mass, velocity, and composition. Our comparisons show that uncertainties in the velocity distribution can lead to a factor of 2–4 uncertainties in the inferred ejecta mass based on peak infrared luminosities. We also show that early-time UV or optical observations may be able to constrain the velocity distribution, reducing the uncertainty in the ejecta mass. 
    more » « less
  2. Zhang, Jiahua (Ed.)
    Abstract Microplastics are globally ubiquitous in marine environments, and their concentration is expected to continue rising at significant rates as a result of human activity. They present a major ecological problem with well-documented environmental harm. Sea spray from bubble bursting can transport salt and biological material from the ocean into the atmosphere, and there is a need to quantify the amount of microplastic that can be emitted from the ocean by this mechanism. We present a mechanistic study of bursting bubbles transporting microplastics. We demonstrate and quantify that jet drops are efficient at emitting microplastics up to 280μm in diameter and are thus expected to dominate the emitted mass of microplastic. The results are integrated to provide a global microplastic emission model which depends on bubble scavenging and bursting physics; local wind and sea state; and oceanic microplastic concentration. We test multiple possible microplastic concentration maps to find annual emissions ranging from 0.02 to 7.4—with a best guess of 0.1—mega metric tons per year and demonstrate that while we significantly reduce the uncertainty associated with the bursting physics, the limited knowledge and measurements on the mass concentration and size distribution of microplastic at the ocean surface leaves large uncertainties on the amount of microplastic ejected. 
    more » « less
  3. null (Ed.)