skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ver: View Discovery in the Wild
We present Ver, a data discovery system that identifies project-join views over large repositories of tables that do not contain join path information, and even when input queries are inaccurate. Ver implements a reference architecture to solve both the technical (scale and search) and human (semantic ambiguity, navigating a large number of results) problems of view discovery. We demonstrate users find the view they want when using Ver with a user study and we demonstrate its performance with large-scale end-to-end experiments on real-world datasets containing tens of millions of join paths.  more » « less
Award ID(s):
2040718
PAR ID:
10427794
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings International Conference on Data Engineering
ISSN:
1084-4627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Top-k queries have been studied intensively in the database community and they are an important means to reduce query cost when only the “best” or “most interesting” results are needed instead of the full output. While some optimality results exist, e.g., the famous Threshold Algorithm, they hold only in a fairly limited model of computation that does not account for the cost incurred by large intermediate results and hence is not aligned with typical database-optimizer cost models. On the other hand, the idea of avoiding large intermediate results is arguably the main goal of recent work on optimal join algorithms, which uses the standard RAM model of computation to determine algorithm complexity. This research has created a lot of excitement due to its promise of reducing the time complexity of join queries with cycles, but it has mostly focused on full-output computation. We argue that the two areas can and should be studied from a unified point of view in order to achieve optimality in the common model of computation for a very general class of top-k-style join queries. This tutorial has two main objectives. First, we will explore and contrast the main assumptions, concepts, and algorithmic achievements of the two research areas. Second, we will cover recent, as well as some older, approaches that emerged at the intersection to support efficient ranked enumeration of join-query results. These are related to classic work on k-shortest path algorithms and more general optimization problems, some of which dates back to the 1950s. We demonstrate that this line of research warrants renewed attention in the challenging context of ranked enumeration for general join queries. 
    more » « less
  2. This paper presents MONET -- an end-to-end semi-supervised learning framework for a keypoint detector using multiview image streams. In particular, we consider general subjects such as non-human species where attaining a large scale annotated dataset is challenging. While multiview geometry can be used to self-supervise the unlabeled data, integrating the geometry into learning a keypoint detector is challenging due to representation mismatch. We address this mismatch by formulating a new differentiable representation of the epipolar constraint called epipolar divergence---a generalized distance from the epipolar lines to the corresponding keypoint distribution. Epipolar divergence characterizes when two view keypoint distributions produce zero reprojection error. We design a twin network that minimizes the epipolar divergence through stereo rectification that can significantly alleviate computational complexity and sampling aliasing in training. We demonstrate that our framework can localize customized keypoints of diverse species, e.g., humans, dogs, and monkeys. 
    more » « less
  3. The analysis of massive datasets requires a large number of processors. Prior research has largely assumed that tracking the actual data distribution and the underlying network structure of a cluster, which we collectively refer to as the topology, comes with a high cost and has little practical benefit. As a result, theoretical models, algorithms and systems often assume a uniform topology; however this assumption rarely holds in practice. This necessitates an end-to-end investigation of how one can model, design and deploy topology-aware algorithms for fundamental data processing tasks at large scale. To achieve this goal, we first develop a theoretical parallel model that can jointly capture the cost of computation and communication. Using this model, we explore algorithms with theoretical guarantees for three basic tasks: aggregation, join, and sorting. Finally, we consider the practical aspects of implementing topology-aware algorithms at scale, and show that they have the potential to be orders of magnitude faster than their topology-oblivious counterparts. 
    more » « less
  4. The analysis of massive datasets requires a large number of processors. Prior research has largely assumed that tracking the actual data distribution and the underlying network structure of a cluster, which we collectively refer to as the topology, comes with a high cost and has little practical benefit. As a result, theoretical models, algorithms and systems often assume a uniform topology; however this assumption rarely holds in practice. This necessitates an end-to-end investigation of how one can model, design and deploy topology-aware algorithms for fundamental data processing tasks at large scale. To achieve this goal, we first develop a theoretical parallel model that can jointly capture the cost of computation and communication. Using this model, we explore algorithms with theoretical guarantees for three basic tasks: aggregation, join, and sorting. Finally, we consider the practical aspects of implementing topology-aware algorithms at scale, and show that they have the potential to be orders of magnitude faster than their topology-oblivious counterparts. 
    more » « less
  5. Finkbeiner, Bernd; Kovacs, Laura (Ed.)
    With the growing use of deep neural networks(DNN) in mis- sion and safety-critical applications, there is an increasing interest in DNN verification. Unfortunately, increasingly complex network struc- tures, non-linear behavior, and high-dimensional input spaces combine to make DNN verification computationally challenging. Despite tremen- dous advances, DNN verifiers are still challenged to scale to large ver- ification problems. In this work, we explore how the number of stable neurons under the precondition of a specification gives rise to verifica- tion complexity. We examine prior work on the problem, adapt it, and develop several novel approaches to increase stability. We demonstrate that neuron stability can be increased substantially without compromis- ing model accuracy and this yields a multi-fold improvement in DNN verifier performance. 
    more » « less