skip to main content


Title: Epigenetic factor competition reshapes the EMT landscape
The emergence of and transitions between distinct phenotypes in isogenic cells can be attributed to the intricate interplay of epigenetic marks, external signals, and gene regulatory elements. These elements include chromatin remodelers, histone modifiers, transcription factors, and regulatory RNAs. Mathematical models known as Gene Regulatory Networks (GRNs) are an increasingly important tool to unravel the workings of such complex networks. In such models, epigenetic factors are usually proposed to act on the chromatin regions directly involved in the expression of relevant genes. However, it has been well-established that these factors operate globally and compete with each other for targets genome-wide. Therefore, a perturbation of the activity of a regulator can redistribute epigenetic marks across the genome and modulate the levels of competing regulators. In this paper, we propose a conceptual and mathematical modeling framework that incorporates both local and global competition effects between antagonistic epigenetic regulators in addition to local transcription factors, and show the counter-intuitive consequences of such interactions. We apply our approach to recent experimental findings on the Epithelial-Mesenchymal Transition (EMT). We show that it can explain the puzzling experimental data as well provide new verifiable predictions.  more » « less
Award ID(s):
2052455
NSF-PAR ID:
10427935
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Volume:
119
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
e2210844119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emergence of and transitions between distinct phenotypes in isogenic cells can be attributed to the intricate interplay of epigenetic marks, external signals, and gene-regulatory elements. These elements include chromatin remodelers, histone modifiers, transcription factors, and regulatory RNAs. Mathematical models known as gene-regulatory networks (GRNs) are an increasingly important tool to unravel the workings of such complex networks. In such models, epigenetic factors are usually proposed to act on the chromatin regions directly involved in the expression of relevant genes. However, it has been well-established that these factors operate globally and compete with each other for targets genome-wide. Therefore, a perturbation of the activity of a regulator can redistribute epigenetic marks across the genome and modulate the levels of competing regulators. In this paper, we propose a conceptual and mathematical modeling framework that incorporates both local and global competition effects between antagonistic epigenetic regulators, in addition to local transcription factors, and show the counterintuitive consequences of such interactions. We apply our approach to recent experimental findings on the epithelial–mesenchymal transition (EMT). We show that it can explain the puzzling experimental data, as well as provide verifiable predictions. 
    more » « less
  2. INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks. 
    more » « less
  3. Abstract Background Efforts to understand genetic variability involved in an individual’s susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. Methods To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund’s adjuvant (CFA) in rats. Results Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequences known to bind transcription factors in the CCI DARs and 33 in the CFA DARs. Two motifs were significantly enriched in both models. Conclusions Our improved understanding of the changes in chromatin accessibility that occur in chronic pain states may identify regulatory genomic elements that play essential roles in modulating gene expression in the DRG. 
    more » « less
  4. Abstract

    Plants respond to wounding stress by changing gene expression patterns and inducing the production of hormones including jasmonic acid. This wounding transcriptional response activates specialized metabolism pathways such as the glucosinolate pathways in Arabidopsis thaliana. While the regulatory factors and sequences controlling a subset of wound-response genes are known, it remains unclear how wound response is regulated globally. Here, we how these responses are regulated by incorporating putative cis-regulatory elements, known transcription factor binding sites, in vitro DNA affinity purification sequencing, and DNase I hypersensitive sites to predict genes with different wound-response patterns using machine learning. We observed that regulatory sites and regions of open chromatin differed between genes upregulated at early and late wounding time-points as well as between genes induced by jasmonic acid and those not induced. Expanding on what we currently know, we identified cis-elements that improved model predictions of expression clusters over known binding sites. Using a combination of genome editing, in vitro DNA-binding assays, and transient expression assays using native and mutated cis-regulatory elements, we experimentally validated four of the predicted elements, three of which were not previously known to function in wound-response regulation. Our study provides a global model predictive of wound response and identifies new regulatory sequences important for wounding without requiring prior knowledge of the transcriptional regulators.

     
    more » « less
  5. Wittkopp, Patricia (Ed.)
    Abstract Chromatin configuration is highly dynamic during embryonic development in animals, exerting an important point of control in transcriptional regulation. Yet there exists remarkably little information about the role of evolutionary changes in chromatin configuration to the evolution of gene expression and organismal traits. Genome-wide assays of chromatin configuration, coupled with whole-genome alignments, can help address this gap in knowledge in several ways. In this study we present a comparative analysis of regulatory element sequences and accessibility throughout embryogenesis in three sea urchin species with divergent life histories: a lecithotroph Heliocidaris erythrogramma, a closely related planktotroph H. tuberculata, and a distantly related planktotroph Lytechinus variegatus. We identified distinct epigenetic and mutational signatures of evolutionary modifications to the function of putative cis-regulatory elements in H. erythrogramma that have accumulated nonuniformly throughout the genome, suggesting selection, rather than drift, underlies many modifications associated with the derived life history. Specifically, regulatory elements composing the sea urchin developmental gene regulatory network are enriched for signatures of positive selection and accessibility changes which may function to alter binding affinity and access of developmental transcription factors to these sites. Furthermore, regulatory element changes often correlate with divergent expression patterns of genes involved in cell type specification, morphogenesis, and development of other derived traits, suggesting these evolutionary modifications have been consequential for phenotypic evolution in H. erythrogramma. Collectively, our results demonstrate that selective pressures imposed by changes in developmental life history rapidly reshape the cis-regulatory landscape of core developmental genes to generate novel traits and embryonic programs. 
    more » « less