We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
A wellknown open problem of Meir and Moser asks if the squares of sidelength 1/
 NSFPAR ID:
 10427960
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 Discrete & Computational Geometry
 Volume:
 71
 Issue:
 4
 ISSN:
 01795376
 Format(s):
 Medium: X Size: p. 11781189
 Size(s):
 p. 11781189
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ ${\rho}^{0}$c polarised and$$ \mu ^{+}$$ ${\mu}^{+}$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{}$$ ${\mu}^{}$$$c^2$$ ${c}^{2}$ 17.0 GeV/$$< W<$$ $<W<$ , 1.0 (GeV/$$c^2$$ ${c}^{2}$c )$$^2$$ ${}^{2}$ 10.0 (GeV/$$< Q^2<$$ $<{Q}^{2}<$c ) and 0.01 (GeV/$$^2$$ ${}^{2}$c )$$^2$$ ${}^{2}$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ $<{p}_{\text{T}}^{2}<$c ) . Here,$$^2$$ ${}^{2}$W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ ${Q}^{2}$ the transverse momentum of the$$p_{\textrm{T}}$$ ${p}_{\text{T}}$ meson with respect to the virtualphoton direction. The measured nonzero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ${\rho}^{0}$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ ${\gamma}_{T}^{\ast}\to {V}_{L}^{}$s channel helicity conservation. Additionally, we observe a dominant contribution of naturalparityexchange transitions and a very small contribution of unnaturalparityexchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a modeldependent way the role of parton helicityflip GPDs in exclusive production.$$\rho ^0$$ ${\rho}^{0}$ 
Abstract The electric
E 1 and magneticM 1 dipole responses of the nucleus$$N=Z$$ $N=Z$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ ${}^{24}$ Mg($$^{24}$$ ${}^{24}$ ) reaction, were delivered by the ELBE accelerator of the HelmholtzZentrum DresdenRossendorf. The collimated bremsstrahlung photons excited one$$\gamma ,\gamma ^{\prime }$$ $\gamma ,{\gamma}^{\prime}$ , four$$J^{\pi }=1^$$ ${J}^{\pi}={1}^{}$ , and six$$J^{\pi }=1^+$$ ${J}^{\pi}={1}^{+}$ states in$$J^{\pi }=2^+$$ ${J}^{\pi}={2}^{+}$ Mg. Deexcitation$$^{24}$$ ${}^{24}$ rays were detected using the four highpurity germanium detectors of the$$\gamma $$ $\gamma $ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$\gamma $$ $\gamma $ is observed, but this$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ $B\left(M1\right)\uparrow =2.7\left(3\right)\phantom{\rule{0ex}{0ex}}{\mu}_{N}^{2}$ nucleus exhibits only marginal$$N=Z$$ $N=Z$E 1 strength of less than e$$\sum B(E1)\uparrow \le 0.61 \times 10^{3}$$ $\sum B\left(E1\right)\uparrow \le 0.61\times {10}^{3}$ fm$$^2 \, $$ ${}^{2}\phantom{\rule{0ex}{0ex}}$ . The$$^2$$ ${}^{2}$ branching ratios in combination with the expected results from the Alaga rules demonstrate that$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ $B(\Pi 1,{1}_{i}^{\pi}\to {2}_{1}^{+})/B(\Pi 1,{1}_{i}^{\pi}\to {0}_{\mathrm{gs}}^{+})$K is a good approximative quantum number for Mg. The use of the known$$^{24}$$ ${}^{24}$ strength and the measured$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ ${\rho}^{2}(E0,{0}_{2}^{+}\to {0}_{\mathrm{gs}}^{+})$ branching ratio of the 10.712 MeV$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ $B(M1,{1}^{+}\to {0}_{2}^{+})/B(M1,{1}^{+}\to {0}_{\mathrm{gs}}^{+})$ level allows, in a twostate mixing model, an extraction of the difference$$1^+$$ ${1}^{+}$ between the prolate groundstate structure and shapecoexisting superdeformed structure built upon the 6432keV$$\varDelta \beta _2^2$$ $\Delta {\beta}_{2}^{2}$ level.$$0^+_2$$ ${0}_{2}^{+}$ 
Abstract Consider two halfspaces
and$$H_1^+$$ ${H}_{1}^{+}$ in$$H_2^+$$ ${H}_{2}^{+}$ whose bounding hyperplanes$${\mathbb {R}}^{d+1}$$ ${R}^{d+1}$ and$$H_1$$ ${H}_{1}$ are orthogonal and pass through the origin. The intersection$$H_2$$ ${H}_{2}$ is a spherical convex subset of the$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ ${S}_{2,+}^{d}:={S}^{d}\cap {H}_{1}^{+}\cap {H}_{2}^{+}$d dimensional unit sphere , which contains a great subsphere of dimension$${\mathbb {S}}^d$$ ${S}^{d}$ and is called a spherical wedge. Choose$$d2$$ $d2$n independent random points uniformly at random on and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$${\mathbb {S}}_{2,+}^d$$ ${S}_{2,+}^{d}$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$$\log n$$ $logn$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a halfsphere.$${\mathbb {S}}_{2,+}^d$$ ${S}_{2,+}^{d}$ 
Abstract Approximate integer programming is the following: For a given convex body
, either determine whether$$K \subseteq {\mathbb {R}}^n$$ $K\subseteq {R}^{n}$ is empty, or find an integer point in the convex body$$K \cap {\mathbb {Z}}^n$$ $K\cap {Z}^{n}$ which is$$2\cdot (K  c) +c$$ $2\xb7(Kc)+c$K , scaled by 2 from its center of gravityc . Approximate integer programming can be solved in time while the fastest known methods for exact integer programming run in time$$2^{O(n)}$$ ${2}^{O\left(n\right)}$ . So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point$$2^{O(n)} \cdot n^n$$ ${2}^{O\left(n\right)}\xb7{n}^{n}$ can be found in time$$x^* \in (K \cap {\mathbb {Z}}^n)$$ ${x}^{\ast}\in (K\cap {Z}^{n})$ , provided that the$$2^{O(n)}$$ ${2}^{O\left(n\right)}$remainders of each component for some arbitrarily fixed$$x_i^* \mod \ell $$ ${x}_{i}^{\ast}\phantom{\rule{0ex}{0ex}}mod\phantom{\rule{0ex}{0ex}}\ell $ of$$\ell \ge 5(n+1)$$ $\ell \ge 5(n+1)$ are given. The algorithm is based on a$$x^*$$ ${x}^{\ast}$cuttingplane technique , iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a new$$2^{O(n)}n^n$$ ${2}^{O\left(n\right)}{n}^{n}$asymmetric approximate Carathéodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equationstandard form . Such a problem can be reduced to the solution of$$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$ $Ax=b,0\le x\le u,\phantom{\rule{0ex}{0ex}}x\in {Z}^{n}$ approximate integer programming problems. This implies, for example that$$\prod _i O(\log u_i +1)$$ ${\prod}_{i}O(log{u}_{i}+1)$knapsack orsubsetsum problems withpolynomial variable range can be solved in time$$0 \le x_i \le p(n)$$ $0\le {x}_{i}\le p\left(n\right)$ . For these problems, the best running time so far was$$(\log n)^{O(n)}$$ ${(logn)}^{O\left(n\right)}$ .$$n^n \cdot 2^{O(n)}$$ ${n}^{n}\xb7{2}^{O\left(n\right)}$ 
Abstract Let
be an elliptically fibered$$X\rightarrow {{\mathbb {P}}}^1$$ $X\to {P}^{1}$K 3 surface, admitting a sequence of Ricciflat metrics collapsing the fibers. Let$$\omega _{i}$$ ${\omega}_{i}$V be a holomorphicSU (n ) bundle overX , stable with respect to . Given the corresponding sequence$$\omega _i$$ ${\omega}_{i}$ of Hermitian–Yang–Mills connections on$$\Xi _i$$ ${\Xi}_{i}$V , we prove that, ifE is a generic fiber, the restricted sequence converges to a flat connection$$\Xi _i_{E}$$ ${\Xi}_{i}{}_{E}$ . Furthermore, if the restriction$$A_0$$ ${A}_{0}$ is of the form$$V_E$$ ${V}_{E}$ for$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j0)$$ ${\oplus}_{j=1}^{n}{O}_{E}({q}_{j}0)$n distinct points , then these points uniquely determine$$q_j\in E$$ ${q}_{j}\in E$ .$$A_0$$ ${A}_{0}$