MAGFiLO is a dataset of manually annotated solar filaments from H-Alpha observations captured by the Global Oscillation Network Group (GONG). This dataset includes over ten thousand annotated filaments, spanning the years 2011 through 2022. Each annotation details one filament's segmentation, minimum bounding box, spine, and magnetic field chirality. MAGFiLO is the first dataset of its size, enabling advanced deep learning models to identify filaments and their features with unprecedented precision. It also provides a testbed for solar physicists interested in large-scale analysis of filaments.
more »
« less
A Machine Learning Ecosystem for Filament Analysis - Phase I: A Manually Annotated Dataset of Filaments
Detecting and classifying solar filaments is critical in forecasting Earth-affecting transient solar events, including large solar flares and coronal mass ejections. Undetected, these space weather events can cause catastrophic geomagnetic storms resulting in substantial economic damage and death. A network of ground-based observatories, named the Global Oscillation Network Group, was created to provide continuous observation of solar activity. However, parsing the large volume of image data continuously streaming in from GONG tests the limitations of human analysis and presents challenges for space weather research. To address this, we proposed the Machine Learning Ecosystem for Filament Detection (MLEcoFi), an NSF-funded, multiyear project that will produce an open-source collection of filament data and computer vision software for space weather research. In cooperation with NSO, MLEcoFi will assist in automatically detecting, classifying, localizing, and segmenting solar filaments in full-disk H-alpha images. The present phase of research aims to produce a dataset of thousands of GONG H-alpha images, with all filaments’ chirality, bounding box, and segmentation mask manually annotated following strong quality assurance standards, advancing research of filaments and filament-related topics. This dataset, as the first MLEcoFi product, will aid in ongoing and future development of products, including a chirality-aware filament data augmentation engine, high-precision image segmentation loss function, deep neural network segmentation and classification model, and filament detection module that is planned for deployment into NSO’s live infrastructure for the research community. The MLEcoFi team is eager to present its progress and future milestones to obtain valuable feedback from the future users of this ecosystem.
more »
« less
- Award ID(s):
- 2209912
- PAR ID:
- 10427981
- Date Published:
- Journal Name:
- Space Weather Workshop 2023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As solar photovoltaic (PV) has emerged as a dominant player in the energy market, there has been an exponential surge in solar deployment and investment within this sector. With the rapid growth of solar energy adoption, accurate and efficient detection of PV panels has become crucial for effective solar energy mapping and planning. This paper presents the application of the Mask2Former model for segmenting PV panels from a diverse, multi-resolution dataset of satellite and aerial imagery. Our primary objective is to harness Mask2Former’s deep learning capabilities to achieve precise segmentation of PV panels in real-world scenarios. We fine-tune the pre-existing Mask2Former model on a carefully curated multi-resolution dataset and a crowdsourced dataset of satellite and aerial images, showcasing its superiority over other deep learning models like U-Net and DeepLabv3+. Most notably, Mask2Former establishes a new state-of-the-art in semantic segmentation by achieving over 95% IoU scores. Our research contributes significantly to the advancement solar energy mapping and sets a benchmark for future studies in this field.more » « less
-
Cracks of civil infrastructures, including bridges, dams, roads, and skyscrapers, potentially reduce local stiffness and cause material discontinuities, so as to lose their designed functions and threaten public safety. This inevitable process signifier urgent maintenance issues. Early detection can take preventive measures to prevent damage and possible failure. With the increasing size of image data, machine/deep learning based method have become an important branch in detecting cracks from images. This study is to build an automatic crack detector using the state-of-the-art technique referred to as Mask Regional Convolution Neural Network (R-CNN), which is kind of deep learning. Mask R-CNN technique is a recently proposed algorithm not only for object detection and object localization but also for object instance segmentation of natural images. It is found that the built crack detector is able to perform highly effective and efficient automatic segmentation of a wide range of images of cracks. In addition, this proposed automatic detector could work on videos as well; indicating that this detector based on Mask R-CNN provides a robust and feasible ability on detecting cracks exist and their shapes in real time on-site.more » « less
-
Context. With the development of large-aperture ground-based solar telescopes and the adaptive optics system, the resolution of the obtained solar images has become increasingly higher. In the high-resolution photospheric images, the fine structures (umbra, penumbra, and light bridge) of sunspots can be observed clearly. The research of the fine structures of sunspots can help us to understand the evolution of solar magnetic fields and to predict eruption phenomena that have significant impacts on the Earth, such as solar flares. Therefore, algorithms for automatically segmenting the fine structures of sunspots in high-resolution solar image will greatly facilitate the study of solar physics. Aims. This study is aimed at proposing an automatic fine-structure segmentation method for sunspots that is accurate and requires little time. Methods. We used the superpixel segmentation to preprocess a solar image. Next, the intensity information, texture information, and spatial location information were used as features. Based on these features, the Gaussian mixture model was used to cluster different superpixels. According to different intensity levels of the umbra, penumbra, and quiet photosphere, the clusters were classified into umbra, penumbra, and quiet-photosphere areas. Finally, the morphological method was used to extract the light-bridge area. Results. The experimental results show that the method we propose can segment the fine structures of sunspots quickly and accurately. In addition, the method can process high-resolution solar images from different solar telescopes and generates a satisfactory segmentation performance.more » « less
-
Abstract Aphid infestation poses a significant threat to crop production, rural communities, and global food security. While chemical pest control is crucial for maximizing yields, applying chemicals across entire fields is both environmentally unsustainable and costly. Hence, precise localization and management of aphids are essential for targeted pesticide application. The paper primarily focuses on using deep learning models for detecting aphid clusters. We propose a novel approach for estimating infection levels by detecting aphid clusters. To facilitate this research, we have captured a large-scale dataset from sorghum fields, manually selected 5447 images containing aphids, and annotated each individual aphid cluster within these images. To facilitate the use of machine learning models, we further process the images by cropping them into patches, resulting in a labeled dataset comprising 151,380 image patches. Then, we implemented and compared the performance of four state-of-the-art object detection models (VFNet, GFLV2, PAA, and ATSS) on the aphid dataset. Extensive experimental results show that all models yield stable similar performance in terms of average precision and recall. We then propose to merge close neighboring clusters and remove tiny clusters caused by cropping, and the performance is further boosted by around 17%. The study demonstrates the feasibility of automatically detecting and managing insects using machine learning models. The labeled dataset will be made openly available to the research community.more » « less
An official website of the United States government

