skip to main content

Title: Auditing Google's Search Headlines as a Potential Gateway to Misleading Content: Evidence from the 2020 US Election
The prevalence and spread of online misinformation during the 2020 US presidential election served to perpetuate a false belief in widespread election fraud. Though much research has focused on how social media platforms connected people to election-related rumors and conspiracy theories, less is known about the search engine pathways that linked users to news content with the potential to undermine trust in elections. In this paper, we present novel data related to the content of political headlines during the 2020 US election period. We scraped over 800,000 headlines from Google's search engine results pages (SERP) in response to 20 election-related keywords—10 general (e.g., "Ballots") and 10 conspiratorial (e.g., "Voter fraud")—when searched from 20 cities across 16 states. We present results from qualitative coding of 5,600 headlines focused on the prevalence of delegitimizing information. Our results reveal that videos (as compared to stories, search results, and advertisements) are the most problematic in terms of exposing users to delegitimizing headlines. We also illustrate how headline content varies when searching from a swing state, adopting a conspiratorial search keyword, or reading from media domains with higher political bias. We conclude with policy recommendations on data transparency that allow researchers to continue to monitor search engines during elections.  more » « less
Award ID(s):
1749815 2120496
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Online Trust and Safety
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Choosing the political party nominees, who will appear on the ballot for the US presidency, is a long process that starts two years before the general election. The news media plays a particular role in this process by continuously covering the state of the race. How can this news coverage be characterized? Given that there are thousands of news organizations, but each of us is exposed to only a few of them, we might be missing most of it. Online news aggregators, which aggregate news stories from a multitude of news sources and perspectives, could provide an important lens for the analysis. One such aggregator is Google’s Top stories, a recent addition to Google’s search result page. For the duration of 2019, we have collected the news headlines that Google Top stories has displayed for 30 candidates of both US political parties. Our dataset contains 79,903 news story URLs published by 2,168 unique news sources. Our analysis indicates that despite this large number of news sources, there is a very skewed distribution of where the Top stories are originating, with a very small number of sources contributing the majority of stories. We are sharing our dataset1 so that other researchers can answer questions related to algorithmic curation of news as well as media agenda setting in the context of political elections. 
    more » « less
  2. Search engines, by ranking a few links ahead of million others based on opaque rules, open themselves up to criticism of bias. Previous research has focused on measuring political bias of search engine algorithms to detect possible search engine manipulation effects on voters or unbalanced ideological representation in search results. Insofar that these concerns are related to the principle of fairness, this notion of fairness can be seen as explicitly oriented toward election candidates or political processes and only implicitly oriented toward the public at large. Thus, we ask the following research question: how should an auditing framework that is explicitly centered on the principle of ensuring and maximizing fairness for the public (i.e., voters) operate? To answer this question, we qualitatively explore four datasets about elections and politics in the United States: 1) a survey of eligible U.S. voters about their information needs ahead of the 2018 U.S. elections, 2) a dataset of biased political phrases used in a large-scale Google audit ahead of the 2018 U.S. election, 3) Google’s “related searches” phrases for two groups of political candidates in the 2018 U.S. election (one group is composed entirely of women), and 4) autocomplete suggestions and result pages for a set of searches on the day of a statewide election in the U.S. state of Virginia in 2019. We find that voters have much broader information needs than the search engine audit literature has accounted for in the past, and that relying on political science theories of voter modeling provides a good starting point for informing the design of voter-centered audits. 
    more » « less
  3. Budak, Ceren ; Cha, Meeyoung ; Quercia, Daniele ; Xie, Lexing (Ed.)
    We present the first large-scale measurement study of cross-partisan discussions between liberals and conservatives on YouTube, based on a dataset of 274,241 political videos from 973 channels of US partisan media and 134M comments from 9.3M users over eight months in 2020. Contrary to a simple narrative of echo chambers, we find a surprising amount of cross-talk: most users with at least 10 comments posted at least once on both left-leaning and right-leaning YouTube channels. Cross-talk, however, was not symmetric. Based on the user leaning predicted by a hierarchical attention model, we find that conservatives were much more likely to comment on left-leaning videos than liberals on right-leaning videos. Secondly, YouTube's comment sorting algorithm made cross-partisan comments modestly less visible; for example, comments from conservatives made up 26.3% of all comments on left-leaning videos but just over 20% of the comments were in the top 20 positions. Lastly, using Perspective API's toxicity score as a measure of quality, we find that conservatives were not significantly more toxic than liberals when users directly commented on the content of videos. However, when users replied to comments from other users, we find that cross-partisan replies were more toxic than co-partisan replies on both left-leaning and right-leaning videos, with cross-partisan replies being especially toxic on the replier's home turf. 
    more » « less
  4. Abstract

    Social media has been transforming political communication dynamics for over a decade. Here using nearly a billion tweets, we analyse the change in Twitter’s news media landscape between the 2016 and 2020 US presidential elections. Using political bias and fact-checking tools, we measure the volume of politically biased content and the number of users propagating such information. We then identify influencers—users with the greatest ability to spread news in the Twitter network. We observe that the fraction of fake and extremely biased content declined between 2016 and 2020. However, results show increasing echo chamber behaviours and latent ideological polarization across the two elections at the user and influencer levels.

    more » « less
  5. The 2020 US election was accompanied by an effort to spread a false meta-narrative of widespread voter fraud. This meta-narrative took hold among a substantial portion of the US population, undermining trust in election procedures and results, and eventually motivating the events of 6 January 2021. We examine this effort as a domestic and participatory disinformation campaign in which a variety of influencers—including hyperpartisan media and political operatives—worked alongside ordinary people to produce and amplify misleading claims, often unwittingly. To better understand the nature of participatory disinformation, we examine three cases of misleading claims of voter fraud, applying an interpretive, mixed method approach to the analysis of social media data. Contrary to a prevailing view of such campaigns as coordinated and/or elite-driven efforts, this work reveals a more hybrid form, demonstrating both top-down and bottom-up dynamics that are more akin to cultivation and improvisation. 
    more » « less