skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Authenticated Private Information Retrieval
This paper introduces protocols for authenticated private information retrieval. These schemes enable a client to fetch a record from a remote database server such that (a) the server does not learn which record the client reads, and (b) the client either obtains the "authentic" record or detects server misbehavior and safely aborts. Both properties are crucial for many applications. Standard private-information-retrieval schemes either do not ensure this form of output authenticity, or they require multiple database replicas with an honest majority. In contrast, we offer multi-server schemes that protect security as long as at least one server is honest. Moreover, if the client can obtain a short digest of the database out of band, then our schemes require only a single server. Performing an authenticated private PGP-public-key lookup on an OpenPGP key server's database of 3.5 million keys (3 GiB), using two non-colluding servers, takes under 1.2 core-seconds of computation, essentially matching the time taken by unauthenticated private information retrieval. Our authenticated single-server schemes are 30-100 more costly than state-of-the-art unauthenticated single-server schemes, though they achieve incomparably stronger integrity properties.  more » « less
Award ID(s):
2054869
PAR ID:
10428084
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
USENIX Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dunkelman, D.; Dziembowski, S. (Ed.)
    We construct new private-information-retrieval protocols in the single-server setting. Our schemes allow a client to privately fetch a sequence of database records from a server, while the server answers each query in average time sublinear in the database size. Specifically, we introduce the first single-server private-information-retrieval schemes that have sublinear amortized server time, require sublinear additional storage, and allow the client to make her queries adaptively. Our protocols rely only on standard cryptographic assumptions (decision Diffie-Hellman, quadratic residuosity, learning with errors, etc.). They work by having the client first fetch a small “hint” about the database contents from the server. Generating this hint requires server time linear in the database size. Thereafter, the client can use the hint to make a bounded number of adaptive queries to the server, which the server answers in sublinear time—yielding sublinear amortized cost. Finally, we give lower bounds proving that our most efficient scheme is optimal with respect to the trade-off it achieves between server online time and client storage. 
    more » « less
  2. We present SimplePIR, the fastest single-server private information retrieval scheme known to date. SimplePIR’s security holds under the learning-with-errors assumption. To answer a client’s query, the SimplePIR server performs fewer than one 32-bit multiplication and one 32-bit addition per database byte. SimplePIR achieves 10 GB/s/core server throughput, which approaches the memory bandwidth of the machine and the performance of the fastest two-server private-information-retrieval schemes (which require non-colluding servers). SimplePIR has relatively large communication costs: to make queries to a 1 GB database, the client must download a 121 MB "hint" about the database contents; thereafter, the client may make an unbounded number of queries, each requiring 242 KB of communication. We present a second single-server scheme, DoublePIR, that shrinks the hint to 16 MB at the cost of slightly higher per-query communication (345 KB) and slightly lower throughput (7.4 GB/s/core). Finally, we apply our new private-information-retrieval schemes, together with a novel data structure for approximate set membership, to the task of private auditing in Certificate Transparency. We achieve a strictly stronger notion of privacy than Google Chrome’s current approach with modest communication overheads: 16 MB of download per month, along with 150 bytes per TLS connection. 
    more » « less
  3. We introduce the Spiral family of single-server private information retrieval (PIR) protocols. Spiral relies on a composition of two lattice-based homomorphic encryption schemes: the Regev encryption scheme and the Gentry-Sahai-Waters encryption scheme. We introduce new ciphertext translation techniques to convert between these two schemes and in doing so, enable new trade-offs in communication and computation. Across a broad range of database configurations, the basic version of Spiral simultaneously achieves at least a 4.5x reduction in query size, 1.5x reduction in response size, and 2x increase in server throughput compared to previous systems. A variant of our scheme, SpiralStreamPack, is optimized for the streaming setting and achieves a server throughput of 1.9 GB/s for databases with over a million records (compared to 200 MB/s for previous protocols) and a rate of 0.81 (compared to 0.24 for previous protocols). For streaming large records (e.g., a private video stream), we estimate the monetary cost of SpiralStreamPack to be only 1.9x greater than that of the no-privacy baseline where the client directly downloads the desired record. 
    more » « less
  4. Private set intersection (PSI) enables two parties to jointly compute the intersection of their private sets without revealing any extra information to each other. In this work, we focus on the unbalanced setting where one party (a powerful server) holds a significantly larger set than the other party (a resource-limited client). We present a new protocol for this setting that achieves a better balance between low client-side storage and efficient online processing. We first formalize a general framework to transform Private Information Retrieval (PIR) into PSI with techniques used in prior works. Building upon recent advancements in Private Information Retrieval (PIR), specifically the SimplePIR construction (Henzinger et al., USENIX Security'23), combined with our tailored techniques, our construction shows a great improvement in online efficiency. Concretely, when the client holds a single element, our protocol achieves more than 100x faster computation and over 4x lower communication compared to the state-of-the-art unbalanced PSI based on leveled fully homomorphic encryption (Chen et al., CCS'21). The client-side storage is only in the order of tens of megabytes, even for a gigabyte-sized set on the server. Moreover, since the framework is generic, any future improvement in PIR can further improve our construction. 
    more » « less
  5. Dynamic Searchable Symmetric Encryption (DSSE) provides efficient techniques for securely searching and updating an encrypted database. However, efficient DSSE schemes leak some sensitive information to the server. Recent works have implemented forward and backward privacy as security properties to reduce the amount of information leaked during update operations. Many attacks have shown that leakage from search operations can be abused to compromise the privacy of client queries. However, the attack literature has not rigorously investigated techniques to abuse update leakage. In this work, we investigate update leakage under DSSE schemes with forward and backward privacy from the perspective of a passive adversary. We propose two attacks based on a maximum likelihood estimation approach, the UFID Attack and the UF Attack, which target forward-private DSSE schemes with no backward privacy and Level 2 backward privacy, respectively. These are the first attacks to show that it is possible to leverage the frequency and contents of updates to recover client queries. We propose a variant of each attack which allows the update leakage to be combined with search pattern leakage to achieve higher accuracy. We evaluate our attacks against a real-world dataset and show that using update leakage can improve the accuracy of attacks against DSSE schemes, especially those without backward privacy. 
    more » « less