skip to main content


Title: A Tale of 12 Tails: Katanin Severing Activity Affected by Carboxy-Terminal Tail Sequences
In cells, microtubule location, length, and dynamics are regulated by a host of microtubule-associated proteins and enzymes that read where to bind and act based on the microtubule “tubulin code,” which is predominantly encoded in the tubulin carboxy-terminal tail (CTT). Katanin is a highly conserved AAA ATPase enzyme that binds to the tubulin CTTs to remove dimers and sever microtubules. We have previously demonstrated that short CTT peptides are able to inhibit katanin severing. Here, we examine the effects of CTT sequences on this inhibition activity. Specifically, we examine CTT sequences found in nature, alpha1A (TUBA1A), detyrosinated alpha1A, Δ2 alpha1A, beta5 (TUBB/TUBB5), beta2a (TUBB2A), beta3 (TUBB3), and beta4b (TUBB4b). We find that these natural CTTs have distinct abilities to inhibit, most noticeably beta3 CTT cannot inhibit katanin. Two non-native CTT tail constructs are also unable to inhibit, despite having 94% sequence identity with alpha1 or beta5 sequences. Surprisingly, we demonstrate that poly-E and poly-D peptides are capable of inhibiting katanin significantly. An analysis of the hydrophobicity of the CTT constructs indicates that more hydrophobic polypeptides are less inhibitory than more polar polypeptides. These experiments not only demonstrate inhibition, but also likely interaction and targeting of katanin to these various CTTs when they are part of a polymerized microtubule filament.  more » « less
Award ID(s):
1817948
NSF-PAR ID:
10428201
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Biomolecules
Volume:
13
Issue:
4
ISSN:
2218-273X
Page Range / eLocation ID:
620
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Microtubule network remodeling is an essential process for cell development, maintenance, cell division, and motility. Microtubule‐severing enzymes are key players in the remodeling of the microtubule network; however, there are still open questions about their fundamental biochemical and biophysical mechanisms. Here, we explored the ability of the microtubule‐severing enzyme katanin to depolymerize stabilized microtubules. Interestingly, we found that the tubulin C‐terminal tail (CTT), which is required for severing, is not required for katanin‐catalyzed depolymerization. We also found that the depolymerization of microtubules lacking the CTT does not require ATP or katanin's ATPase activity, although the ATP turnover enhanced depolymerization. We also observed that the depolymerization rate depended on the katanin concentration and was best described by a hyperbolic function. Finally, we demonstrate that katanin can bind to filaments that lack the CTT, contrary to previous reports. The results of our work indicate that microtubule depolymerization likely involves a mechanism in which binding, but not enzymatic activity, is required for tubulin dimer removal from the filament ends.

     
    more » « less
  2. Kinesin-mediated transport along microtubules is critical for axon development and health. Mutations in the kinesin Kif21a, or the microtubule subunit β-tubulin, inhibit axon growth and/or maintenance resulting in the eye-movement disorder congenital fibrosis of the extraocular muscles (CFEOM). While most examined CFEOM-causing β-tubulin mutations inhibit kinesin–microtubule interactions, Kif21a mutations activate the motor protein. These contrasting observations have led to opposed models of inhibited or hyperactive Kif21a in CFEOM. We show that, contrary to other CFEOM-causing β-tubulin mutations, R380C enhances kinesin activity. Expression of β-tubulin-R380C increases kinesin-mediated peroxisome transport in S2 cells. The binding frequency, percent motile engagements, run length and plus-end dwell time of Kif21a are also elevated on β-tubulin-R380C compared with wildtype microtubules in vitro. This conserved effect persists across tubulins from multiple species and kinesins from different families. The enhanced activity is independent of tail-mediated kinesin autoinhibition and thus utilizes a mechanism distinct from CFEOM-causing Kif21a mutations. Using molecular dynamics, we visualize how β-tubulin-R380C allosterically alters critical structural elements within the kinesin motor domain, suggesting a basis for the enhanced motility. These findings resolve the disparate models and confirm that inhibited or increased kinesin activity can both contribute to CFEOM. They also demonstrate the microtubule’s role in regulating kinesins and highlight the importance of balanced transport for cellular and organismal health. 
    more » « less
  3. Abstract

    Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host–pathogen interactions. The amphibian pathogen,Batrachochytrium dendrobatidis(Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown.

    The aim of this study was to examine whether host immune and microbiome defences againstBdcorrespond with infection risk and seasonal fluctuations in temperature and humidity.

    Over the course of a year, five populations of Southern leopard frogs (Rana[Lithobates]sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness ofBdgrowth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibitBdgrowth in vitro were used as an estimate of predicted anti‐Bdfunction of the skin microbiome.

    Batrachochytrium dendrobatidisdynamics followed the expected seasonal fluctuations—peaks in cooler months—which coincided with when host mucosal defences were most potent againstBd. Specifically, the concentration and expression of stored AMPs cycled synchronously withBddynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibitBdgrowth was greatest when risk ofBdinfection was highest.

    We interpret the increase in peptide storage in the fall and the shift to a more anti‐Bdmicrobiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool‐adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality ofBdin this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.

     
    more » « less
  4. Abstract

    For a given cloud, whether the cloud top is predominately made up of ice crystals or supercooled liquid droplets plays a large role in the clouds overall radiative effects. This study uses collocated airborne radar, lidar, and thermodynamic data from 12 high‐altitude flight legs during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) to characterize Southern Ocean (SO) cold sector cloud top phase (i.e., within 96 m of top) as a function of cloud top temperature (CTT). A training data set was developed to create probabilistic phase classifications based on High Spectral Resolution Lidar data and Cloud Radar data. These classifications were then used to identify dominant cloud top phase. Case studies are presented illustrating examples of supercooled liquid water at cloud top at different CTT ranges over the SO (−3°C < CTTs < −28°C). During SOCRATES, 67.4% of sampled cloud top had CTTs less than 0°C. Of the subfreezing cloud tops sampled, 91.7% had supercooled liquid water present in the top 96 m and 74.9% were classified entirely as liquid‐bearing. Liquid‐bearing cloud tops were found at CTTs as cold as −30°C. Horizontal cloud extent was also determined as a function of median cloud top height.

     
    more » « less
  5. Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive “sponge” peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using theStylissa carterisponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the spongeAxinella corrugatawas interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in theA. corrugatagenome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom.

     
    more » « less