skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Search for Gravitational Waves from Scorpius X-1 in LIGO O3 Data with Corrected Orbital Ephemeris
Abstract Improved observational constraints on the orbital parameters of the low-mass X-ray binary Scorpius X-1 were recently published in Killestein et al. In the process, errors were corrected in previous orbital ephemerides, which have been used in searches for continuous gravitational waves from Sco X-1 using data from the Advanced LIGO detectors. We present the results of a reanalysis of LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo using a model-based cross-correlation search. The corrected region of parameter space, which was not covered by previous searches, was about 1/3 as large as the region searched in the original O3 analysis, reducing the required computing time. We have confirmed that no detectable signal is present over a range of gravitational-wave frequencies from 25 to 1600 Hz, analogous to the null result of Abbott et al. Our search sensitivity is comparable to that of Abbott et al., who set upper limits corresponding, between 100 and 200 Hz, to an amplitude h 0 of about 10 −25 when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10 −26 assuming the optimal orientation.  more » « less
Award ID(s):
2110460
PAR ID:
10428370
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
949
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h 0 of about 10 −25 when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10 −26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more. 
    more » « less
  2. Abstract Continuous gravitational waves are nearly monochromatic signals emitted by asymmetries in rotating neutron stars. These signals have not yet been detected. Deep all-sky searches for continuous gravitational waves from isolated neutron stars require significant computational expense. Deep searches for neutron stars in binary systems are even more expensive, but these targets are potentially more promising emitters, especially in the hundreds of Hertz region, where ground-based gravitational-wave detectors are most sensitive. We present here an all-sky search for continuous signals with frequency between 300 and 500 Hz, from neutron stars in binary systems with orbital periods between 15 and 60 days and projected semimajor axes between 10 and 40 lt-s. This is the only binary search on Advanced LIGO data that probes this frequency range. Compared to previous results, our search is over an order of magnitude more sensitive. We do not detect any signals, but our results exclude plausible and unexplored neutron star configurations, for example, neutron stars with relative deformations greater than 3 × 10 −6 within 1 kpc from Earth and r -mode emission at the level of α ∼ a few 10 −4 within the same distance. 
    more » « less
  3. Since the first direct detection of gravitational waves by the LIGO–Virgo collaboration in 2015 (B. P. Abbott et al., 2016), the size of the gravitational-wave transient catalog has grown to nearly 100 events (R. Abbott et al., 2023), with the ongoing fourth observing run more than doubling the total number. Extracting astrophysical or cosmological information from these observations is a hierarchical Bayesian inference problem. GWPopulation is designed to provide simple-to-use, robust, and extensible tools for hierarchical inference in gravitational-wave astronomy or cosmology. It has been widely adopted for gravitational-wave astronomy, including producing flagship results for the LIGO-Virgo-KAGRA collaborations (Abac et al., 2024; R. Abbott et al., 2023). While designed to work with observations of compact binary coalescences, GWPopulation may be available to a wider range of hierarchical Bayesian inference problems. 
    more » « less
  4. We report results from an all-sky search of the LIGO data from the third LIGO-Virgo-KAGRA run (O3) for continuous gravitational waves from isolated neutron stars in the frequency band [30, 150] Hz and spindown range of [−1 × 10−8, +1 × 10−9] Hz/s. This search builds upon a previous analysis of the first half of the O3 data using the same PowerFlux pipeline. We search more deeply here by using the full O3 data and by using loose coherence in the initial stage with fully coherent combination of LIGO Hanford (H1) and LIGO Livingston (L1) data, while limiting the frequency band searched and excluding narrow, highly disturbed spectral bands. We detect no signal and set strict frequentist upper limits on circularly polarized and on linearly polarized wave amplitudes, in addition to estimating population-averaged upper limits. The lowest upper limit obtained for circular polarization is ∼ 4.5 × 10−26, and the lowest linear polarization limit is ∼ 1.3 × 10−25 (both near 144 Hz). The lowest estimated population-averaged upper limit is ∼ 1.0 × 10−25. In the frequency band and spindown range searched here, these limits improve upon the O3a PowerFlux search by a median factor of ∼ 1.4 and upon the best previous limits obtained for the full O3 data by a median factor of ∼ 1.1. 
    more » « less
  5. Abstract We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of $$10^{5}, 10^{6}, 10^{7}\mathrm {\ Mpc}^3$$ 10 5 , 10 6 , 10 7 Mpc 3 for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of $$1^{+12}_{-1}$$ 1 - 1 + 12 ( $$10^{+52}_{-10}$$ 10 - 10 + 52 ) for binary neutron star mergers, of $$0^{+19}_{-0}$$ 0 - 0 + 19 ( $$1^{+91}_{-1}$$ 1 - 1 + 91 ) for neutron star–black hole mergers, and $$17^{+22}_{-11}$$ 17 - 11 + 22 ( $$79^{+89}_{-44}$$ 79 - 44 + 89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers. 
    more » « less