skip to main content


This content will become publicly available on May 10, 2024

Title: Methylated guanosine and uridine modifications in S. cerevisiae mRNAs modulate translation elongation
Chemical modifications to protein encoding messenger RNAs (mRNAs) influence their localization, translation, and stability within cells. Over 15 different types of mRNA modifications have been observed by sequencing and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) approaches. While LC-MS/MS is arguably the most essential tool available for studying analogous protein post-translational modifications, the high-throughput discovery and quantitative characterization of mRNA modifications by LC-MS/MS has been hampered by the difficulty of obtaining sufficient quantities of pure mRNA and limited sensitivities for modified nucleosides. We have overcome these challenges by improving the mRNA purification and LC-MS/MS pipelines. The methodologies we developed result in no detectable non-coding RNA modifications signals in our purified mRNA samples, quantify 50 ribonucleosides in a single analysis, and provide the lowest limit of detection reported for ribonucleoside modification LC-MS/MS analyses. These advancements enabled the detection and quantification of 13 S. cerevisiae mRNA ribonucleoside modifications and reveal the presence of four new S. cerevisiae mRNA modifications at low to moderate levels (1-methyguanosine, N 2-methylguanosine, N 2, N 2-dimethylguanosine, and 5-methyluridine). We identified four enzymes that incorporate these modifications into S. cerevisiae mRNAs (Trm10, Trm11, Trm1, and Trm2, respectively), though our results suggest that guanosine and uridine nucleobases are also non-enzymatically methylated at low levels. Regardless of whether they are incorporated in a programmed manner or as the result of RNA damage, we reasoned that the ribosome will encounter the modifications that we detect in cells. To evaluate this possibility, we used a reconstituted translation system to investigate the consequences of modifications on translation elongation. Our findings demonstrate that the introduction of 1-methyguanosine, N 2-methylguanosine and 5-methyluridine into mRNA codons impedes amino acid addition in a position dependent manner. This work expands the repertoire of nucleoside modifications that the ribosome must decode in S. cerevisiae. Additionally, it highlights the challenge of predicting the effect of discrete modified mRNA sites on translation de novo because individual modifications influence translation differently depending on mRNA sequence context.  more » « less
Award ID(s):
1904146
NSF-PAR ID:
10428529
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
RSC Chemical Biology
Volume:
4
Issue:
5
ISSN:
2633-0679
Page Range / eLocation ID:
363 to 378
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) has become the gold‐standard technique to study RNA and its various modifications. While most research on RNA nucleosides has been focused on their biological roles, discovery of new modifications remains of interest. With state‐of‐the‐art technology, the presence of artifacts can confound the identification of new modifications. Here, we report the characterization of a non‐natural mcm5isoC ribonucleoside inS. cerevisiaetotal tRNA hydrolysate by higher‐energy collisional dissociation (HCD)‐based fingerprints and isotope labeling of RNA. Its discovery revealed a class of amino/imino ribonucleoside artifacts that are generated during RNA hydrolysis under ammonium‐buffered mild basic conditions. We then identified digestion conditions that can reduce or eliminate their formation. These finding and method enhancements will improve the accurate detection of new RNA modifications.

     
    more » « less
  2. Abstract

    Liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) has become the gold‐standard technique to study RNA and its various modifications. While most research on RNA nucleosides has been focused on their biological roles, discovery of new modifications remains of interest. With state‐of‐the‐art technology, the presence of artifacts can confound the identification of new modifications. Here, we report the characterization of a non‐natural mcm5isoC ribonucleoside inS. cerevisiaetotal tRNA hydrolysate by higher‐energy collisional dissociation (HCD)‐based fingerprints and isotope labeling of RNA. Its discovery revealed a class of amino/imino ribonucleoside artifacts that are generated during RNA hydrolysis under ammonium‐buffered mild basic conditions. We then identified digestion conditions that can reduce or eliminate their formation. These finding and method enhancements will improve the accurate detection of new RNA modifications.

     
    more » « less
  3. Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant post-transcriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases and the resulting single-stranded RNA products are subject to LC-MS/MS analysis. The application of LC-MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence S. cerevisiae tRNAs with up to 97% sequence coverage for individual tRNA species by LC-MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs. 
    more » « less
  4. N6-methyladenosine (m6A) regulates stability and translation of messenger RNA (mRNA) in various biological processes. In this work, we show that knockout of the m6A writerMettl3or the nuclear readerYthdc1in mouse embryonic stem cells increases chromatin accessibility and activates transcription in an m6A-dependent manner. We found that METTL3 deposits m6A modifications on chromosome-associated regulatory RNAs (carRNAs), including promoter-associated RNAs, enhancer RNAs, and repeat RNAs. YTHDC1 facilitates the decay of a subset of these m6A-modified RNAs, especially elements of the long interspersed element-1 family, through the nuclear exosome targeting–mediated nuclear degradation. Reducing m6A methylation by METTL3 depletion or site-specific m6A demethylation of selected carRNAs elevates the levels of carRNAs and promotes open chromatin state and downstream transcription. Collectively, our results reveal that m6A on carRNAs can globally tune chromatin state and transcription.

     
    more » « less
  5. Abstract Background

    Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate.

    Results

    NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency.

    Conclusions

    Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.

     
    more » « less