skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Network evolution of regional brain volumes in young children reflects neurocognitive scores and mother’s education
Abstract The maturation of regional brain volumes from birth to preadolescence is a critical developmental process that underlies emerging brain structural connectivity and function. Regulated by genes and environment, the coordinated growth of different brain regions plays an important role in cognitive development. Current knowledge about structural network evolution is limited, partly due to the sparse and irregular nature of most longitudinal neuroimaging data. In particular, it is unknown how factors such as mother’s education or sex of the child impact the structural network evolution. To address this issue, we propose a method to construct evolving structural networks and study how the evolving connections among brain regions as reflected at the network level are related to maternal education and biological sex of the child and also how they are associated with cognitive development. Our methodology is based on applying local Fréchet regression to longitudinal neuroimaging data acquired from the RESONANCE cohort, a cohort of healthy children (245 females and 309 males) ranging in age from 9 weeks to 10 years. Our findings reveal that sustained highly coordinated volume growth across brain regions is associated with lower maternal education and lower cognitive development. This suggests that higher neurocognitive performance levels in children are associated with increased variability of regional growth patterns as children age.  more » « less
Award ID(s):
2014626 2210891
PAR ID:
10428675
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract From birth to 5 years of age, brain structure matures and evolves alongside emerging cognitive and behavioral abilities. In relating concurrent cognitive functioning and measures of brain structure, a major challenge that has impeded prior investigation of their time‐dynamic relationships is the sparse and irregular nature of most longitudinal neuroimaging data. We demonstrate how this problem can be addressed by applying functional concurrent regression models (FCRMs) to longitudinal cognitive and neuroimaging data. The application of FCRM in neuroimaging is illustrated with longitudinal neuroimaging and cognitive data acquired from a large cohort (n= 210) of healthy children, 2–48 months of age. Quantifying white matter myelination by using myelin water fraction (MWF) as imaging metric derived from MRI scans, application of this methodology reveals an early period (200–500 days) during which whole brain and regional white matter structure, as quantified by MWF, is positively associated with cognitive ability, while we found no such association for whole brain white matter volume. Adjusting for baseline covariates including socioeconomic status as measured by maternal education (SES‐ME), infant feeding practice, gender, and birth weight further reveals an increasing association between SES‐ME and cognitive development with child age. These results shed new light on the emerging patterns of brain and cognitive development, indicating that FCRM provides a useful tool for investigating these evolving relationships. 
    more » « less
  2. Abstract Brain growth in early childhood is reflected in the evolution of proportional cerebrospinal fluid volumes (pCSF), grey matter (pGM), and white matter (pWM). We study brain development as reflected in the relative fractions of these three tissues for a cohort of 388 children that were longitudinally followed between the ages of 18 and 96 months. We introduce statistical methodology (Riemannian Principal Analysis through Conditional Expectation, RPACE) that addresses major challenges that are of general interest for the analysis of longitudinal neuroimaging data, including the sparsity of the longitudinal observations over time and the compositional structure of the relative brain volumes. Applying the RPACE methodology, we find that longitudinal growth as reflected by tissue composition differs significantly for children of mothers with higher and lower maternal education levels. 
    more » « less
  3. Background: Type 2 diabetes mellitus (T2DM) is known to be associated with neurobiological and cognitive deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in the context of the brain are currently unknown. Methods: We characterized neurocognitive effects independently associated with T2DM and age in a large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by applying correlation measures to the separately characterized neurocognitive changes. Our findings were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM and healthy controls (HCs). We also evaluated in a cohort of T2DM-diagnosed individuals using UK Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects. Results: The UK Biobank dataset included cognitive and neuroimaging data (N = 20,314), including 1012 T2DM and 19,302 HCs, aged between 50 and 80 years. Duration of T2DM ranged from 0 to 31 years (mean 8.5 ± 6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis evaluated 34 cognitive studies (N = 22,231) and 60 neuroimaging studies: 30 of T2DM (N = 866) and 30 of aging (N = 1088). Compared to age, sex, education, and hypertension-matched HC, T2DM was associated with marked cognitive deficits, particularly in executive functioning and processing speed . Likewise, we found that the diagnosis of T2DM was significantly associated with gray matter atrophy, primarily within the ventral striatum , cerebellum , and putamen , with reorganization of brain activity (decreased in the caudate and premotor cortex and increased in the subgenual area , orbitofrontal cortex, brainstem, and posterior cingulate cortex ). The structural and functional changes associated with T2DM show marked overlap with the effects correlating with age but appear earlier, with disease duration linked to more severe neurodegeneration. Metformin treatment status was not associated with improved neurocognitive outcomes. Conclusions: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging. T2DM gray matter atrophy occurred approximately 26% ± 14% faster than seen with normal aging; disease duration was associated with increased neurodegeneration. Mechanistically, our results suggest a neurometabolic component to brain aging. Clinically, neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and treatment efficacy based on neurological effects. Funding: The research described in this article was funded by the W. M. Keck Foundation (to LRMP), the White House Brain Research Through Advancing Innovative Technologies (BRAIN) Initiative (NSFNCS-FR 1926781 to LRMP), and the Baszucki Brain Research Fund (to LRMP). None of the funding sources played any role in the design of the experiments, data collection, analysis, interpretation of the results, the decision to publish, or any aspect relevant to the study. DJW reports serving on data monitoring committees for Novo Nordisk. None of the authors received funding or in-kind support from pharmaceutical and/or other companies to write this article. 
    more » « less
  4. null (Ed.)
    Abstract The developing brain is marked by high plasticity, which can lead to vulnerability to early life stressors. Previous studies indicate that childhood maltreatment is associated with structural aberrations across a number of brain regions. However, prior work is limited by small sample sizes, heterogeneous age groups, the examination of one structure in isolation, the confounding of different types of early life stressors, and not accounting for socioeconomic status. These limitations may contribute to high variability across studies. The present study aimed to investigate how trauma is specifically associated with cortical thickness and gray matter volume (GMV) differences by leveraging a large sample of children ( N  = 9270) from the Adolescent Brain Cognitive Development SM Study (ABCD Study ® ). A latent measure of trauma exposure was derived from DSM-5 traumatic events, and we related this measure of trauma to the brain using structural equation modeling. Trauma exposure was associated with thinner cortices in the bilateral superior frontal gyri and right caudal middle frontal gyrus ( p fdr - values < .001) as well as thicker cortices in the left isthmus cingulate and posterior cingulate ( p fdr - values ≤ .027), after controlling age, sex, and race/ethnicity. Furthermore, trauma exposure was associated with smaller GMV in the right amygdala and right putamen ( p fdr - values ≤ .048). Sensitivity analyses that controlled for income and parental education were largely consistent with the main findings for cortical thickness. These results suggest that trauma may be an important risk factor for structural aberrations, specifically for cortical thickness differences in frontal and cingulate regions in children. 
    more » « less
  5. Objectives: This study of Samburu pastoralists (Kenya) employs a same-sex sibling design to test the hypothesis that exposure in utero to severe drought and maternal psychosocial stress negatively influence children’s growth and adiposity. As a comparison, we also hypothesized that regional climate contrasts would influence children’s growth and adiposity based on ecogeographical patterning. Materials and Methods: Anthropometric measurements were taken on Samburu children ages 1.8 – 9.6 years exposed to severe drought in utero and younger same-sex siblings (drought-exposed, n = 104; unexposed, n = 109) in two regions (highland, n = 128; lowland, n = 85). Mothers were interviewed to assess lifetime and pregnancy-timed stress. Results: Drought exposure associated to lower weight-for-age and higher adiposity. Drought did not associate to tibial growth on its own but the interaction between drought and region negatively associated to tibial growth in girls. Also, drought exposure and historically low rainfall associated to tibial growth in sensitivity models. A hotter climate positively associated to adiposity and tibial growth. Culturally specific stressors (being forced to work too hard, being denied food by male kin) associated to stature and tibial growth for age. Significant covariates for child outcomes included lifetime reported trauma, wife status, and livestock. Discussion: Children exposed in utero to severe drought, a hotter climate, and psychosocial stresss exhibited growth differences in our study. Our results demonstrate that climate change may deepen adverse health outcomes in populations already psychosocially and nutritionally stressed. Our results also highlight the value of ethnography to identifying meaningful stressors. 
    more » « less